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Abstract— This paper considers the design of active control
for car suspension systems using a particular form of energy-
based control called Interconnection-and-Damping-Assignment
Passivity-Based Control (IDA-PBC). This approach allows one
to shape the kinetic and potential energy as well as modify
the power flow among different components of the system
by changing the interconnection and dissipative structure in
a meaningful way. Different controller parameterisations are
considered to design a class of controllers for active suspension
systems.

I. INTRODUCTION

Car suspension systems are designed to reduce road-

and steering-induced vibration, and they also contribute to

improve vehicle handling and manoeuvring capabilities [1].

Controlled suspension systems in cars can be classified into

active or semi-active. In active systems, a passive spring and

damper are interconnected sharing velocity with an actively

controlled force actuator that can inject power into the

system as well as take power away—dissipation. In the semi-

active counterpart, the damper characteristic is controlled;

thus energy can only be dissipated at different rates. From

a vehicle performance perspective, a controlled suspension

system should minimise vertical acceleration at the passenger

location and reduce as much as possible tyre deflections

in order to secure good steering and manoeuvring handling

capabilities—these two objectives are a tradeoff [1].
This paper considers the design of active control for car

suspension systems, where the actuator acting in conjunction

with the spring and damper us controlled using an energy-

based control strategy called Interconnection-and-Damping-

Assignment Passivity-Based Control (IDA-PBC) [2]. This

control approach allows one to shape the kinetic and poten-

tial energy as well as modify the power flow among different

components of the system by changing the interconnection

and dissipative structure of the system. We show that, in

our design, the equilibrium point of the unforced closed-loop

system is globally asymptotically stable, and with a bounded

road disturbance input (vertical displacement and velocity),

and that the closed-loop system is input-state-stable (ISS).
In [3], work related to optimal control for this application

problem is surveyed. Within such approach, the coefficients

of the control cost functional, which are the control tuning

parameters, have little physical meaning. With the method

proposed in this paper, the physical meaning of the controller

coefficients is regained. This paper complements the previous

work on semi-active suspension in Port-Hamiltonian form

[4], and active suspension in Brayton-Moser form [5].
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II. SET-POINT REGULATION FOR UNDERACTUATED

MECHANICAL SYSTEMS IN PHS FORM

In this section, we review the set-point regulation control

of underactuated mechanical systems in Port-Hamiltonian

form (PHS) using IDA-PBC [2].

A. Open-loop Port-Hamiltonian model

We consider the following Hamiltonian model of a simple

mechanical system with added velocity controlled dissipation

and external force inputs:[
ṗ
q̇

]
=

[
0 −I
I 0

] [
∂H
∂p
∂H
∂q

]
−

[
∂D
∂q̇

0

]
+

[
G
0

]
u, (1)

where q ∈ R
n is the vector of the generalised displacements,

p ∈ R
n is the vector of conjugate momenta, u ∈ R

m is the

vector of inputs, G weighs the action of the input on the

system and the Hamiltonian is given by

H(p,q) =
1

2
pTM−1(q)p︸ ︷︷ ︸
T (p,q)

+V(q). (2)

where M is the generalised mass matrix. The stored kinetic

and potential energies in the system are T (p,q) and V(q)
respectively. The Rayleigh dissipation function D(q̇) repre-

sents the power lost to the environment by the dissipative

elements and satisfies the condition ∂TD
∂q̇ q̇ ≥ 0 [6]. If

the gradient of the dissipation function can be factored as
∂D
∂q̇ = D∂H

∂p , where D = DT ≥ 0, then we can write (1) in

the familiar Port-Hamiltonian form,[
ṗ
q̇

]
=

[
−D −I
I 0

] [
∂H
∂p
∂H
∂q

]
+

[
G
0

]
u. (3)

B. Closed-loop PHS

The objective of the control design is to render the closed-

loop system in the following PHS form:[
ṗ
q̇

]
=

[
J−Dd −Md(q)M

−1(q)
M−1(q)Md(q) 0

] [
∂Hd

∂p
∂Hd

∂q

]
,

(4)

where J = −JT is an additional interconnection term, Dd =
DT

d ≥ 0 is the desired damping and the desired closed-loop

Hamiltonian is given by

Hd(p,q) =
1

2
pTM−1

d (q)p︸ ︷︷ ︸
Td(p,q)

+Vd(q), (5)

where Md(q) = MT
d (q) > 0 is used to shape the kinetic

energy T (p,q). The potential energy Vd(q) is used to assign
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the desired closed-loop equilibrium, at which Vd(q) attains

its minimum.

C. Matching

To find a control law u, we must match the ṗ and q̇
equations in (3) and (4). The q̇ equation is already matched

by construction of (4) since

q̇ =
∂H
∂p

= M−1(q)p

= M−1(q)Md(q)M
−1
d (q)p

= M−1(q)Md(q)
∂Hd

∂p
.

(6)

The matching of ṗ yields

ṗ = −DM−1(q)p− ∂H
∂q

+Gu

= (J−Dd)M
−1
d (q)p−Md(q)M

−1(q)
∂Hd

∂q
.

(7)

Since (7) consists of n equations and m < n unknown

control forces, we need to satisfy the following additional

n−m constraints to find a solution for u:

G⊥
{
DM−1(q)p+ (J−Dd)M

−1
d (q)p

+
∂H
∂q

−Md(q)M
−1(q)

∂Hd

∂q

}
= 0, (8)

where G⊥ is any full-rank left annihilator of G, that is,

G⊥G = 0 and rank(G⊥) = n −m. If (8) is satisfied, the

control law is given by

u =
(
GTG

)−1
GT

{
DM−1(q)p+ (J−Dd)M

−1
d (q)p

+
∂H
∂q

−Md(q)M
−1(q)

∂Hd

∂q

}
. (9)

We can separate the matching equation, (8), into powers

of p, under the assumption that D and Dd are independent

of p. Furthermore, we assume J = J0(q) + J1(p,q) where

J0(q) = −JT
0 (q), and J1(p,q) = −JT

1 (p,q) is restricted

to depend on p linearly. Thus, a particular solution of (8) is

obtained by solving the following equations:

G⊥
{
∂V
∂q

−Md(q)M
−1(q)

∂Vd
∂q

}
= 0,

(10a)

G⊥
{
DM−1(q)p+ (J0 −Dd)M

−1
d (q)p

}
= 0,

(10b)

G⊥
{
∂T
∂q

+ J1M
−1
d (q)p−Md(q)M

−1(q)
∂Td
∂q

}
= 0.

(10c)

The control objective reduces to choosing Md(q) =
MT

d (q) > 0, Vd(q) > 0, Dd = DT
d ≥ 0, J0 = −JT

0 and

J1(p) = −JT
1 (p) such that (10) is satisfied.

Fig. 1: Idealised quarter-car suspension system.

III. QUARTER-CAR ACTIVE SUSPENSION SYSTEM

A lumped-parameter model of the quarter-car active sus-

pension system is shown in Figure 1. The quarter chassis

mass mb is supported by spring, ks, damper, bs and an

active force actuator, Fs. The mass mw represents the total

unsprung mass of the wheel including the tyre, rim, brake

rotor and suspension link masses. The road is considered

a source of velocity which acts on the wheel via the tyre

stiffness, kt, and the tyre damping coefficient bt.
The coordinates xw and xb are the wheel and body

displacements from their respective equilibrium positions,

and xr(t) is the time-varying road position. We define the

generalised coordinates q1 � xw − xr(t) and q2 � xb − xw.

Using these coordinates, the kinetic co-energy is given by

T ∗(q̇, t) =
1

2
mw(ẋr(t) + q̇1)

2 +
1

2
mb(ẋr(t) + q̇1 + q̇2)

2, (11)

the potential energy is given by

V(q) = 1

2
ktq

2
1 +

1

2
ksq

2
2 , (12)

and the dissipated power is given by

D(q̇) = 1

2
btq̇

2
1 +

1

2
bsq̇

2
2 . (13)

The conjugate momenta are given by

p1 � ∂L
∂q̇1

= mw(ẋr(t) + q̇1) +mb(ẋr(t) + q̇1 + q̇2), (14)

p2 � ∂L
∂q̇2

= mb(ẋr(t) + q̇1 + q̇2), (15)

where L(q, q̇, t) = T ∗(q̇, t)− V(q) is the Lagrangian. The

Hamiltonian is defined by H(p,q) = T (p) + V(q) where

the kinetic energy is given by T (p) = 1
2p

TM−1p and

M =

[
mw +mb mb

mb mb

]
. (16)

Note that due to the input ẋr(t), we have that q̇ �= ∂H/∂p.

Indeed, from (14), (15) and the Hamiltonian H(p,q), it
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follows that

q̇1 =
∂H
∂p1

− ẋr(t), (17)

q̇2 =
∂H
∂p2

. (18)

The above differs from (3) due to the modelling hypothesis

of considering the road as a velocity input, which still results

in a port—an interconnection consisting of power variables.

The momenta dynamics are given by

ṗ1 = −∂H
∂q1

− ∂D
∂q̇1

= −∂H
∂q1

− bt

(
∂H
∂p1

− ẋr(t)

)
, (19)

ṗ2 = −∂H
∂q2

− ∂D
∂q̇2

+ Fs

= −∂H
∂q2

− bs
∂H
∂p2

+ Fs. (20)

Equations (17-20) can be compactly written in Port-

Hamiltonian form with force and velocity inputs,

[
ṗ
q̇

]
=

[
−D −I
I 0

] [
∂H
∂p
∂H
∂q

]
+

[
G
0

]
Fs +

[
G1

G2

]
ẋr(t), (21)

where D = diag(bt, bs), G = [0, 1]T, G1 = [bt, 0]
T and

G2 = [−1, 0]T.

A. Time-varying state transformation

To render the open-loop system (21) into a structure

similar to that of (3) and to design the control input Fs,

we can define a time-varying state transformation

ζ � p−G1xr(t), (22)

η � q−G2xr(t). (23)

This results in an open-loop system of the form

[
ζ̇
η̇

]
=

[
−D −I
I 0

] [
∂E
∂ζ
∂E
∂η

]
+

[
G
0

]
Fs, (24)

where

E(ζ,η, t) =W(ζ, t) + U(η, t), (25)

and

W(ζ, t) =
1

2

[
ζ1 + btxr(t)

ζ2

]T
M−1

[
ζ1 + btxr(t)

ζ2

]
, (26)

U(η, t) = 1

2
kt(η1 − xr(t))

2 +
1

2
ksη

2
2 . (27)

Note that the PHS model (24) is in a similar form to (3),

except that it has a time-varying storage function, (25).

B. Control design

Let the desired closed-loop dynamics be described by

following the Port-Hamiltonian System:[
ζ̇
η̇

]
=

[
J0 −Dd −MdM

−1

M−1Md 0

] [
∂Ed
∂ζ
∂Ed
∂η

]
, (28)

where J0 = −JT
0 is an additional interconnection term,

Dd = DT
d > 0 is the desired closed-loop damping, Md

is the desired closed-loop mass matrix,

Ed(ζ,η, t) =Wd(ζ, t) + Ud(η, t), (29)

and

Wd(ζ, t) =
1

2

[
ζ1 + btxr(t)

ζ2

]T
M−1

d

[
ζ1 + btxr(t)

ζ2

]
, (30)

and Ud(η, t) is the desired closed-loop potential energy.

Since (28) has the same form as (4), we can solve (10) to

satisfy matching, and then use (9) to find the control law.

This choice of desired closed-loop system is motivated

by the fact that the open-loop mass matrix M is constant.

We can trivially satisfy the kinetic energy matching equation

(10c) with any constant Md and then set J1 = 0. Then, to

satisfy matching, we have only potential energy (10a) and

damping (10b) to consider.

Let Md have the following parameterisation:

Md =

[
a1 a2
a2 a3

]
, (31)

where a1, a2 and a3 are free parameters that must be chosen

such that Md > 0.

Then, using (10a), Ud(η, t) has a solution given by

Ud(η, t) =
ktmw

2(a1 − a2)
(η1 − xr(t))

2 +Φ(αη1 + η2) , (32)

where

α =
a1mb − a2(mw +mb)

(a1 − a2)mb
, (33)

and Φ(·) is any free function which we choose to regulate the

desired equilibrium point. To ensure that Ud(η, t) is positive

definite, we choose Φ(z) = 1
2kz(z − z∗)2 where z∗ = αx∗r

and x∗r is some nominal road position1.

Let Dd and J0 have the following parameterisation:

Dd =

[
b1 b2
b2 b3

]
, J0 =

[
0 −j0
j0 0

]
. (34)

Then, using (10b), Dd has a solution with parameters

given by

b1 = (a1 − a2)
bt
mw

, (35a)

b2 = (a2 − a3)
bt
mw

− j0, (35b)

where j0 and b3 are free parameters to be chosen such that

Dd > 0.

1For example, a running average may be used where road preview is not
available.
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The closed-loop system (28) may be transformed back

in the original coordinates, subject to the disturbance input

ẋr(t),[
ṗ
q̇

]
=

[
J0 −Dd −MdM

−1

M−1Md 0

] [
∂Hd

∂p
∂Hd

∂q

]
+

[
G1

G2

]
ẋr(t),

(36)

where

Hd(p,q, t) =
1

2
pTM−1

d p+ Vd(q, t), (37)

and

Vd(q, t) =
ktmw

2(a1 − a2)
q21 +Φ(α(xr(t) + q1) + q2) . (38)

IV. STABILITY PROPERTIES OF THE CLOSED LOOP

In this section, we follows the approach in [7] to study

the stability properties of the PHS in the framework of ISS

theory. We consider three special cases of the controller

proposed in the previous section:

• Controller 1. Active damping injection

– Md = M =⇒ Td(p) = T (p)
– α = 0, kz = ks =⇒ Vd(q, t) = V(q)
– Choose b2 (via j0) and b3 as free parameters

• Controller 2. Energy shaping and damping injection

preserving location of open-loop equilibrium

– α = 0 ⇐⇒ a2 = mb

mw+mb
a1

– b2 = 0 ⇐⇒ j0 = bt
mw

(a2 − a3)
– Choose a1, a3, b3, kz as free parameters

• Controller 3. Energy shaping and damping injection

with inertial decoupling

– α = 1 ⇐⇒ a2 = 0
– b2 = 0 ⇐⇒ j0 = bt

mw
(a2 − a3)

– Choose a1, a3, b3, kz as free parameters

The next proposition considers the stability of the closed-

loop system using either controller 1 or controller 2 .

Proposition 1: Consider the system (36) with a desired

potential energy function Vd(q) that satisfies∣∣∣∂Vd(q)
∂q

∣∣∣ ≤ χ(q) (39)

where χ ∈ K∞. Then,

i) The equilibrium point of (36) with ẋr(t) = 0 is globally

asymptotically stable.

ii) The control system (36) with input ẋr(t) is input-state-

stable provided that
∣∣∣∂2Vd(q)

∂q2

∣∣∣ ≤ kd, with kd a positive

constant.

Proof: i) We use the Hamiltonian Hd as a Lyapunov

candidate function. The orbital derivative of Hd along the

solution of (36) yields

Ḣd = −pTM−1
d DdM

−1
d p ≤ 0,

which ensures Lyapunov stability. Asymptotic stability fol-

lows from the Invariance Principle and the fact that the

maximum invariant set in S = {(p,q)|Hd(p,q) = 0} =
(0, q̄). Since Hd is proper, the stability property is global.

ii) To prove ISS we use a ISS-Lyapunov candidate function

as follows

Q(p,q) = 1

2
pTM−1

d p+ Vd(p) + εpTM−1
d

∂Vd
∂q

, (40)

which is positive definite for a sufficiently small constant

ε > 0. The derivative of Q with respect to time yields

Q̇ =
∂TQ
∂p

ṗ+
∂TQ
∂q

q̇ = [M−1
d p+ εM−1

d

∂Vd
∂q

]T[−Md

M−1 ∂Vd
∂q

+ (J0 −Dd)M
−1
d p] + [

∂Vd
∂q

+ ε
∂2Vd
∂q2

M−1
d p]TM−1p+ [M−1

d p+ εM−1
d

∂Vd
∂q

]TG1u+

[
∂Vd
∂q

+ ε
∂2Vd
∂q2

M−1
d p]TG2u

= −pTFp− ∂TVd
∂q

εM−1 ∂Vd
∂q

+
∂TVd
∂q

εM−1

(J0 −Dd)M
−1
d p+ pTM−1

d G1u+
∂TVd
∂q

εM−1
d

G1u
∂TVd
∂q

G2u+ pTεM−1
d

∂2Vd
∂q2

G2u, (41)

where we use the matrix F = M−1
d DdM

−1
d −

εM−1
d

∂2Vd

∂q2 M−1. Given that the Hessian of the potential

energy is bounded, then F is positive definite for a suf-

ficiently small ε. Consequently, its symmetric part Fsy =
F+FT

2 is also positive definite. Using these matrices and

E = ε
2M

−1(J0 −Dd)M
−1
d , we can write

Q̇ ≤ −[pT ∂TVd
∂q

]

[
Fsy ET

E εM−1

] [
p

∂Vd

∂q

]
+

(
|M−1

d ||G1|+ ε|M−1
d |

∣∣∣∂2Vd
∂q2

∣∣∣|G2|
)
|p||u|+(

ε|M−1
d ||G1|+ |G2|

)∣∣∣∂Vd
∂q

∣∣∣|u|
≤ −c1

(
|p|2 +

∣∣∣∂Vd
∂q

∣∣∣2)+ c2|p||u|+ c3

∣∣∣∂Vd
∂q

∣∣∣|u|
(42)

for some positive constants c1, c2 and c3. Using the fact that

for vectors v and w and a, b ∈ R>0

−a|v|2 + b|v||w| ≤ −a

2
|v|2 + b2

2a
|w|2,

it follows that

Q̇ ≤ −c1
2

(
|p|2 +

∣∣∣∂Vd
∂q

∣∣∣2)+
c22 + c23
2c1

|u|2,
(43)

which proves that Q is an ISS-Lyapunov function since

|∂Vd

∂q | ≤ χ(q).
Remark 1. The desired Hamiltonian in closed loop does

not qualify as an ISS-Lyapunov function. However, the

addition of a cross term, as done in the previous proposition,

364



produces a suitable candidate ISS-Lyapunov function—see

for example [8] in the framework of ISS theory or [9] in

the context of strictly Lyapunov function for PH systems.

The next proposition considers the stability of the

closed-loop system using controller 3.

Proposition 2: Consider the system (36) with a desired

potential energy function

Vd(q, t) =
k1
2
q21 +

k2
2

(xr(t) + q1 + q2)
2
, (44)

which follows from (38) by choosing Φ(r) = 1
2k2r

2 with

k2 ∈ R>0, α = 1, and k1 = ktmw

2(a1−a2)
. Then,

i) The equilibrium point of (36) with ẋr(t) = 0 is globally

asymptotically stable.

ii) The control system (36) with inputs ẋr(t) and xr(t) is

input-state-stable.

Proof: i) The system (36) can be written as[
ṗ
q̇

]
=

[
J0 −Dd −MdM

−1

M−1Md 0

] [
∂P
∂p
∂P
∂q

]
+

[
G3 G1

0 G2

] [
xr(t)
ẋr(t)

]
,

(45)

where

P(p,q) = 1

2
pTM−1

d p+
1

2
qTKq, (46)

K =

[
k1 + k2 k2

k2 k2

]
= KT > 0,

and G3 = −k2MdM
−1. Using P as a Lyapunov candidate

function and computing its time derivative along the solution

of (45) it yields

Ṗ = −pTM−1
d DdM

−1
d p ≤ 0,

which proves Lyapunov stability. Asymptotic stability fol-

lows from the Invariance Principle and the fact that the

maximum invariant set in S = {(p,q)|P(p,q) = 0} =
(0,0). Since P is proper, the stability property is global.

ii) ISS of the system follows from GAS and noting that

the system is linear [10], [11]. Indeed, the system can be

written as [
ṗ
q̇

]
= A

[
p
q

]
+Bu(t) (47)

with

A =

[
(J0 −Dd)M

−1
d −MdM

−1K
M−1 0

]
and

B =

[
G3 G1

0 G2

]
Since the system is GAS, then A is Hurwitz and the

trajectory solution ϕ(t) can be written as

ϕ(t) = eAt

[
p(0)
q(0)

]
+

∫ t

0

eAτBu(τ)dτ

Using the bound |eAt| ≤ ce−λt, for appropriate positive

constants c and λ, we can write

|ϕ(t)| ≤ ce−λt

∣∣∣∣∣
[
p(0)
q(0)

] ∣∣∣∣∣+
∫ t

0

ce−λt|B||u(τ)|dτ

≤ ce−λt

∣∣∣∣∣
[
p(0)
q(0)

] ∣∣∣∣∣+ c|B|
λ

sup
0≤τ≤t

|u(τ)|,

which proves bounded-input-bounded-state stability and ISS.

V. CASE STUDY

We consider the design of an active suspension controller

for a scale model quarter-car rig with parameters given in

the Appendix. The simulated scenario consists of a 1cm road

amplitude disturbance at 0.5 seconds.

Figure 2 shows the open-loop response of the system.

Figure 3 shows the response of the active damping controller
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Fig. 2: Open-loop response.

(controller 1). This scheme is active since the j0 term, which

implements b2 �= 0, requires the controller to exchange

power with the system, and therefore it is not a semi-active

suspension controller.
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Fig. 3: Active damping injection; j0 = −11.5, b3 = 30.

Figure 4 shows the energy shaping and damping injection

controller which preserves the location of the open-loop

equilibrium (controller 2). The chassis and wheel systems
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Fig. 4: Energy shaping and damping injection preserving

location of open-loop equilibrium; a1 = 24.97, a2 = 17.3,

a3 = 17.3, b2 = 0, b3 = 0.109, kz = 1.

are almost decoupled due to the low closed-loop damping b3
and stiffness kz . This response has a long settling time.

Figure 5 shows the energy shaping and damping injection

controller which decouples the inertia (controller 3). This

scheme actively controls the chassis position with respect to

an inertial frame.
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Fig. 5: Energy shaping and damping injection with inertial

decoupling; a1 = 3.45, a3 = 0.105, a2 = 0, b2 = 0, b3 =
196.5, kz = 1107.4.

VI. CONCLUSIONS

This paper considers the design of active control for

car suspension systems using a particular form of energy-

based control. The results complement previous work in

the literature. We analyse three controllers, namely, active

damping injection and energy shaping with both coupled and

decoupled inertias. We show input to state stability for the

three controllers and present simulation results based on a

scale model of a quarter-car suspension system.

The proposed controller is tuned in terms of parameters

that have a clear physical meaning, in terms of mass,

damping and spring stiffness coefficients. The comparison

between the different controllers suggests that controller 3,

namely, energy shaping with inertial decoupling, provides the

best performance in terms of minimising vertical acceleration

and jerk.

APPENDIX

The suspension parameters are found in Table I.

TABLE I: Plant parameters.

Parameter Value

mw 1 kg
mb 2.45 kg
kt 2500 N/m
ks 980 N/m
bt 5 Ns/m
bs 7.5 Ns/m
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