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This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular
method for active vibration control of structures and mechanical systems. Benefits of IFF
include robustness, guaranteed stability and simplicity. However, the maximum damping
performance is dependent on the stiffness of the system; hence, some systems cannot be

control scheme is proposed. The improved method achieves arbitrary damping for any
mechanical system by introducing a feed-through term. The proposed improvement is
experimentally demonstrated by actively damping an objective lens assembly for a high-
speed confocal microscope.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The presence of undesirable vibrations is known to degrade the performance of structural and mechanical systems that
may lead to system failures and malfunctions [1]. Vibrations appear due to the unwanted excitation of system resonances. A
common method for reducing vibration is to artificially increase the viscous damping in the system. Damping control can be
classified into passive or active. Examples of traditional passive approaches include viscoelastic damping and tuned-mass
absorbers [2]. These approaches are commonly integrated into the structural or mechanical design and eliminate the need of
additional controlled hardware and sensors. However, passive damping methods can be sensitive to changes in resonance
frequencies, may be bulky, and may not perform well at low frequencies. On the other hand, active damping control has the
potential to overcome the performance limitations of passive damping methods [3,4]. Active control typically requires the
integration of sensors and a feedback control system to artificially increase the damping ratio of a system.

Active damping control can be found in scientific and industrial applications where the speed and accuracy are key
performance criteria, for example, scanning probe microscopy [5–8], nano-fabrication [9,10], precision optics [11,12],
robotics [13], medical [14] and aerospace systems [15]. In addition, active damping control can also be found in defence
applications where the system lifetime is important [16]. A number of techniques for damping control have been
demonstrated successfully in the literature, these include Positive Position Feedback (PPF) [17], polynomial based control
[18], acceleration feedback [19], shunt control [20,21], resonant control [22], Force Feedback [23–26], and Integral Resonance
Control (IRC) [27,28]. Among these techniques, PPF controllers, velocity feedback controllers, force feedback controllers, and
IRC controllers have been shown to guarantee stability when the plant is strictly negative imaginary [29]. Controllers with
automatic synthesis have also been successfully applied to vibration control applications. Examples include robust
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H1 controllers [30–32] and LMI based controllers [33]. However, such methods are rarely used in practice because of their
implementation complexity.

In Refs. [23–26] Integral Force Feedback (IFF) is described for vibration control. This technique utilizes a force sensor and
an integral controller to directly augment the damping of a mechanical system. The major advantages of IFF are the
simplicity of the controller, guaranteed stability, excellent performance and robustness to variation of resonance frequency.
However, the maximum damping achievable with IFF is a function of the system properties, in particular the system's
stiffness relative to the actuator stiffness. This means that some systems can be critically damped using IFF while other
systems exhibit insufficient damping.

In this work, an improvement to integral force feedback is described which allows an arbitrary damping ratio to be
achieved for a mechanical system. The modification amounts to replacing the integral controller with a first-order low-pass
filter. Although the additional complexity is negligible, the damping performance is significantly improved. This result
allows integral force feedback control to be applied to systems that were not previously suited.
2. Classical integral force feedback (CIFF)

Integral force feedback control has been widely employed for augmenting the damping of flexible structures. The
feedback law is simple to implement and under common circumstances provides excellent damping performance with
guaranteed stability. Fig. 1 illustrates a structure G equipped with a piezoelectric actuator that produces a force Fa with
internal stiffness Ka. A force sensor is collocated with the piezoelectric actuator and measures the axial force Fs acting on the
system G. The variable d represents the mechanical displacement.

The classical integral force feedback controller has a block diagram representation illustrated in Fig. 2. The transfer
function between the unconstrained piezo expansion δ to the sensor force Fs is adapted from [23]

GFsδ sð Þ ¼ Fs
δ
¼ Ka 1�

Xn
i ¼ 1

vi
1þs2=ω2

i

( )
; (1)

where ωi is the natural frequency of the system and vi is the fraction of modal strain energy for the ith mode. The modal
zeros zi are given as

z2i ¼ω2
i ð1�viÞ: (2)

The integral force feedback controller is

Cd1 sð Þ ¼ Kd1

Kas
; (3)

where Kd1 is the gain of controller. The maximum modal damping is [23]

ζmax
i ¼ωi�zi

2ωi
; (4)
Fig. 1. Structure G with a piezoelectric transducer.

Fig. 2. Block diagram representation of Classical Integral Force Feedback.
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and the corresponding controller gain is

Kd1 ¼ωi

ffiffiffiffiffiffi
ωi

zi

r
: (5)

The proofs of (4) and (5) are given in Appendix A. The root locus plot corresponding to CIFF is shown in Fig. 3(a). The main
limitation of the classical method is that the maximum modal damping (4) depends on the distance between the system
poles ωi and zeros zi. If the distance between the pole and zero is small, the maximum modal damping achievable with CIFF
is reduced.

3. Optimal integral force feedback (OIFF)

This paper proposes an improvement of the classical integral force feedback methodology. A new feed-through term β is
introduced into the system as shown in Fig. 4(a). The new system in Fig. 4(a) is cast into the CIFF structure via a change of
variable. This allows a straightforward comparison between the CIFF and OIFF systems and to make use of previous results
reported for CIFF. In particular, the expressions for maximum modal damping (4) and controller gain (5). This is done by
equating the systems in Fig. 4(a) and (b), that is

Ka 1�
Xn
i ¼ 1

vi
1þs2=ω2

i

( )
þβ¼ K̂ a 1�

Xn
i ¼ 1

v̂i

1þs2=ω2
i

( )
;

Kaþβ�
Xn
i ¼ 1

Kavi
1þs2=ω2

i

¼ K̂ a�
Xn
i ¼ 1

K̂ av̂i

1þs2=ω2
i

: (6)

From (6) we obtain the new expressions via a change of variable

K̂ a ¼ Kaþβ; (7)

and

v̂i ¼
Kavi
K̂ a

¼ Kavi
Kaþβ

: (8)

Note that the change of variables (7) and (8) is not unique, other options are possible.
The transfer function from δ̂ to F̂ s is

ĜFsδ sð Þ ¼ K̂ a 1�
Xn
i ¼ 1

v̂i

1þs2=ω2
i

( )
: (9)
Fig. 3. Typical root locus plots. (a) Classical method. (b) Optimal method.

Fig. 4. Block diagram representations of Optimal Integral Force Feedback. (a) With new feed-through term β. (b) Equivalent classical form.
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The modal zeros are now a function of β

ẑi β
� �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

i 1� Ka

Kaþβ
vi

� �s
: (10)

This results in an extra degree of freedom that allows the position of the zeros to be modified. As β decreases, the zeros
move closer to the real axis, under the condition that Kaðvi�1Þoβo0 is satisfied. The integral force feedback controller is

Cd2 sð Þ ¼ Kd2

K̂ as
: (11)

The root locus plot for a typical OIFF system is shown in Fig. 3(b). Notice that the location of the zero changes with respect to β.
The new maximum modal damping is

ζ̂
max

i ¼ωi� ẑiðβÞ
2ẑ iðβÞ

; (12)

which corresponds to the new optimal gain

Kd2 ¼ωi

ffiffiffiffiffiffiffiffiffiffi
ωi

ẑiðβÞ

r
: (13)

The derivations of (12) and (13) are discussed in Appendix A.
On the other hand, given a desired modal damping ζd, the value of β required is

β¼ �Kaþ
Kavið2ζdþ1Þ2
4ζdð1þζdÞ

: (14)

3.1. Comparison between integral resonance control and integral force feedback

Integral Resonance Control is a well-known damping technique that is based on displacement feedback while Integral
Force Feedback is based upon force feedback [27]. Aside from the difference feedback variables, the major difference is the
open-loop structure of the systems. In IRC, the open-loop transfer function is represented by [27]

GIRC sð Þ ¼
Xn
i ¼ 1

αi

s2þ2ζiωisþω2
i

; (15)

where αi408 i and n represents the number of modes that sufficiently describe the properties of the structure. For IFF, the
open-loop transfer function is

GIFF sð Þ ¼ Ka 1�
Xn
i ¼ 1

vi
1þs2=ω2

i

( )
; (16)

whereωi is the natural frequency of the system and vi is the fraction of modal strain energy for the ith mode. In classical IFF,
the only control variable is the feedback gain, while in the case of IRC, the feedback gain and the feed-through variable are
both variables. In the proposed method, an additional feed-through term is added to the classic IFF structure, which
provides a structure similar to that found in IRC control. However, although both damping techniques introduce an
additional feed-through term, the optimal values and closed-loop response are different for each case due to the different
open-loop systems.

4. Case study

In this section, the performance of CIFF and OIFF is demonstrated on a simple mechanical system.

4.1. Mechanical dynamics and system properties

The mechanics of a second-order system are illustrated in Fig. 5 with parameters listed in Table 1. The equation of motion
for this system is

Mp
€dþcf _dþðKaþkf Þd¼ Fa; (17)

where Mp is the mass of the platform and the stiffness and damping coefficient of the flexures are denoted by kf and cf
respectively. The force of the actuator is Fa and the stiffness is Ka. A force sensor is collocated with the actuator and measures
the load force Fs. The configuration of the system is such that the actuator and the flexure appear mechanically in parallel,
hence, the stiffness coefficients can be grouped together,

k¼ Kaþkf (18)



Fig. 5. Mechanical diagram of a second-order mechanical system where Fs is the measured force acting between the actuator and the mass in the vertical
direction.

Table 1
Parameters of a simple mechanical system.

Parameter Variable Value

Mass Mp 250 g
Flexure stiffness kf 300 N/μm
Actuator stiffness Ka 100 N/μm
Flexure damping cf 10 N/m s�1
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This simplifies the equation of motion (17) to

Mp
€dþcf _dþk¼ Fa: (19)

The transfer function from actuator force Fa to the displacement of the mass d is

GdFa sð Þ ¼ d
Fa

¼ 1
Mps2þcf sþk

(20)

The sensor force Fs can be written as

Fs ¼ Fa�dKa;

¼ Fa�KaFaGdFa ðsÞ;
¼ Fa 1�KaGdFa sð Þ� �

: (21)

The transfer function between the applied force Fa and measured force Fs is found by rearranging (21).

GFsFa sð Þ ¼ Fs
Fa

¼ 1�KaGdFa sð Þ: (22)

The force developed by the actuator Fa is

Fa ¼ Kaδ: (23)

Recall that δ is the unconstrained piezo expansion.
Substituting (23) into (22), we obtain the transfer function from the unconstrained piezo expansion δ to the force of the

sensor Fs

GFsδ ¼
Fs
δ
;

¼ Ka
Fs
Fa
;

¼ Ka 1�KaGdFa sð Þ� �
: (24)

A valid assumption is that the effect of the damping in the flexure cf is small and thus negligible. Hence, equating (1) and
(24) results in an expression for vi and ωi

Ka 1�
Xn
i ¼ 0

vi
1þs2=ω2

i

( )
¼ Ka 1�KaGdFa sð Þ� �

¼ Ka 1� Ka

Mps2þk

� �
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¼ Ka 1� Ka=k
s2= k

Mp
þ1

 !
(25)

where

vi ¼
Ka

k
; ω2

i ¼
k
Mp

: (26)

The frequency of the open-loop poles of (22) is

ω1 ¼
ffiffiffiffiffiffiffi
k
Mp

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kaþkf
Mp

s
: (27)

The corresponding open-loop zeros are

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

i ð1�viÞ
q

;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kaþkf
Mp

1�Ka

k

� �s
;

¼
ffiffiffiffiffiffiffi
kf
Mp

s
: (28)

which for the system are ω1 ¼ 6:4 kHz and z1 ¼ 5:5 kHz.

4.2. Control design

4.2.1. Classical integral force feedback
The open-loop frequency response of GFsFa ðsÞ is shown in Fig. 6. A key observation is that its phase response lies between

0 and 1801. Fig. 7 shows a general property of flexible structures with inputs and outputs proportional to the applied and
measured forces. The integral controller (3) has a constant phase lag of 901 so the loop-gain of the system lies between –901
and 901. As a result, the closed-loop system has an infinite gain margin and a phase margin of 901.

The optimal gain and the maximum damping ratio for the example system using CIFF is Kd1 ¼ 4:3� 104 and ζmax
1 ¼ 0:077

respectively. These values can be validated by the numerical root-locus plot shown in Fig. 9. The numerically obtained
optimal gain is 4:57� 104 and the corresponding damping ratio is 0.077. This correlates closely with the predicted values
which supports the accuracy of the assumptions made in deriving the optimal gain.
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Fig. 7. Block diagram of the mechanical system using OIFF.
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Table 2
Comparison between analytic and numerically obtained damping ratio and feedback gain.

β Analytic Numerical

ζ̂
max Kd2 ζ̂

max Kd2

�6:67� 107 0.500 5:65� 104 0.501 5:57� 104

�6:85� 107 0.600 5:93� 104 0.601 5:94� 104

�6:98� 107 0.707 6:21� 104 0.708 6:23� 104

�7:07� 107 0.800 6:45� 104 0.801 6:49� 104

�7:13� 107 0.900 6:69� 104 0.902 6:70� 104
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4.2.2. Optimal integral force feedback
The CIFF method can be extended to include the feed-through term β as illustrated in Fig. 4(a). For practical

implementation, the equivalent controller Ĉ dðsÞ presented to the plant, i.e. the transfer function from Fs to δ, is found as

Ĉ d sð Þ ¼ Cd2ðsÞ
1þCd2ðsÞβ

: (29)



Fig. 10. Block diagram of the CIFF system for analysis.
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Fig. 13. Block diagram of the experimental set-up.
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The additional “feed-through” term β is effectively added into the controller. Hence, no physical modification of
piezoelectric actuator or mechanical system is required.

The relationship between β and ζ described in (14) for the case study is plotted in Fig. 8. The maximum modal damping
with CIFF is 0.077; however, with OIFF, the maximum modal damping ranges from 0.077 to 1 with different values of β.
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The root locus of the system is shown in Fig. 9. The optimal feedback gain, maximum damping ratio and corresponding
value of β are given in Table 2. These values are validated by the numerical root-locus plot in Fig. 9 which is also given in
Table 2. These values correlate closely with the predicted values which support the accuracy of the assumptions made in
deriving the optimal gain. The closed-loop transfer function between the reference r to the sensor force Fs is

GFsr sð Þ ¼
Fs
r
¼ Ĉ dGFsδ

1þ Ĉ dGFsδ
: (30)

when s¼ 0

GFsr 0ð Þ ¼ Ĉ dGFsδð0Þ
1þ Ĉ dGFsδð0Þ

¼ GFsδð0Þ
GFsδð0Þþβ

: (31)

This shows that the DC gain of the closed-loop increases as β is decreased. Recall that the maximum damping ratio of the
closed-loop system increases as β is decreased.
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Table 3
Experimental results: numerically obtained data.

β ζ̂
max Kd2 β ζ̂

max Kd2

0.0 0.33 1700 �0.4 0.49 2350
�0.1 0.36 1840 �0.5 0.57 2500
�0.2 0.39 2060 �0.6 0.68 2840
�0.3 0.44 2160 �0.7 0.85 3300
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4.3. Effects of external force disturbance

We examine the effect of external force disturbances to the system. Consider the block diagram shown in Fig. 10, where
an external force disturbance ω acts on the platform of the system in addition to the actuator force Fa. The transfer function
from the disturbance ω to the displacement of the platform d is

Gdω sð Þ ¼ GdFa ð1þ Ĉ dKaÞ
1þ Ĉ dKað1�KaGdFaÞ

(32)

Fig. 11 shows the frequency response of GdωðsÞ for both CIFF and OIFF with ζd ¼ 0:707. From the frequency response, we can
conclude that the improvement in damping results in a system that is more sensitive to external force disturbance.
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5. Experimental results

The experiment was conducted on a Queensgate OSM-Z-100B objective lens positioner and Olympus 100� objective
lens as shown in Fig. 12. This single-axis lens positioner has a range of 100 μm and a static stiffness of 1.5 N m�1. The weight
of the objective lens is 88.8 g. The damping controller is implemented using analogue electronics. The block diagram of the
experimental set-up is shown in Fig. 13. The open-loop frequency response of the stage was measured from the input of the
voltage amplifier u2 which is proportional to the input force Fa to the force sensor Fs and position sensor output d. The
frequency responses were measured using a HP 89410A vector signal analyser with an excitation of 100 mVpp random noise
signal.

The open-loop frequency responses are shown in Fig. 14. The open-loop resonance frequency is around 383 Hz. The
frequency responses in Fig. 14 reveal an extremely high modal density. The first two modes are relative close in frequency.
The root locus of the system using CIFF corresponds to β¼ 0 in Fig. 15. Here, the optimal gain and maximum damping ratio
are numerically obtained from the root locus plot.

Kd1 ¼ 1700; ζmax ¼ 0:33 (33)

Fig. 15 also includes the root locus plots of the system using OIFF at different values of β. The relationship between β and
ζ (shown in Fig. 16) was numerically found from the root locus plot. These values are summarised in Table 3. The maximum
damping ratio can be increased from 0.33 to 0.85 by adjusting the value of the feed through term β. Fig. 14 also shows the
closed-loop frequency responses of the system using CIFF and OIFF with β¼ �0:6. The closed-loop frequency responses are
measured from u1 to the force sensor Fs and position sensor output d. The closed-loop response shows that with both
method the first mode has been effectively damped. However, the damping ratio and settling time improvements cannot be
directly observed from the frequency plots because of the difference in DC gain.

The most direct method for experimentally observing damping ratio and settling time is the step response of the system
which is plotted in Fig. 17. The overshoot of the systemwith CIFF is 18 percent as compared to 1 percent for the system with
OIFF. This shows the significant improvement in the system's damping. Furthermore, the 0.1 percent settling time of the
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system with CIFF controller is 0.173 compared to 0.102 for the system with OIFF, an improvement of over 40 percent. The
additional oscillation in both step responses is due to the uncontrolled higher-order dynamics of the system.
6. Conclusion

This paper describes an extension to integral force feedback damping control that allows arbitrary mechanical damping
to be achieved for any mechanical system. An additional feed-through term is added to the system to provide an extra
degree of freedom that can be used to arbitrarily manipulate the system zeros and maximum damping. Simulation results
on a second-order system demonstrate an increase in the maximum achievable damping from 0.077 to 1 using the proposed
extension. This result will allow high-performance mechanical systems to be critically damped with a first-order control
law. The experimental results on a objective lens positioner demonstrate an increase in the maximum damping from 0.33 to
0.68. The closed-loop frequency responses show that the dominant first resonance mode has been attenuated by 20 dB and
an improvement in the step response. Furthermore, the step response of the system with OIFF shows an significant
improvement in both the overshoot and settling time as compared to the system with CIFF. Future work includes modelling
the system in a negative imaginary framework to facilitate system with multiple sensors and actuators.
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Appendix A. Derivation of maximum modal damping and controller gain

In a CIFF system, the closed-loop poles with open-loop system (1) and controller (3) is

sðs2þω2
i ÞþKd1ðs2þz2i Þ ¼ 0; (A.1)

where the pole position

s¼ ρðKd1Þð�ζþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ζ2

q
Þ: (A.2)

is a function of the integral force feedback gain Kd1. The expression of the maximum modal damping (4) and controller gain
(5) can be found analytically from the root locus plot shown in Fig. 18. The solutions were computed using Maple, a
computer algebra software. The procedures are listed below.
1.
 Replace (A.2) into (A.1),

ρ Kd1ð Þ �ζþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ζ2þ1

q� �
ω2þ ρ Kd1ð Þ� �2 �ζþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ζ2þ1

q� �2
 !

þKd1 ω2þ ρ Kd1ð Þ� �2 �ζþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ζ2þ1

q� �2
 !

¼ 0 (A.3)
2.
 Separate (A.3) into real and imaginary components.

Real: �4 ρ Kd1ð Þ� �3ζ3þ2 ρ Kd1ð Þ� �2Kd1ζ
2þ3ζ ρ Kd1ð Þ� �3

�ρ Kd1ð Þω2ζ� ρ Kd1ð Þ� �2Kd1þKd1z
2 (A.4)

Imaginary:4 ρ Kd1ð Þ� �3ζ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ζ2þ1

q
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ζ2þ1

q
ρ Kd1ð Þ� �2Kd1ζ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ζ2þ1

q
ρ Kd1ð Þ� �3þρ Kd1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ζ2þ1

q
ω2 (A.5)
3.
 The pole position that corresponds to the maximum damping is the point when a line tangent from the origin intersects
with the root locus. This can be found analytically by differentiating (A.4) and (A.5) with respect to Kd1, i.e. d=dKd1(A.4)
and d=dKd1(A.5).
4.
 Replace the variables ρðKd1Þ ¼ cρ and d=dKd1ρðKd1Þ ¼ cdρ, where cρ and cdρ are constants, into (A.4) and (A.5), d=dKd1(A.4)
and d=dKd1(A.5).
5.
 Solve the four equations in Step 4 simultaneously to find solutions for the unknowns ζ;ρ; dro;Kd1.
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There are eight possible solutions from Step 5, however, only one of the solutions is non-trivial and feasible. The solutions
include
�
 Two trivial solution corresponds to cρ¼cρ. These solutions are neglected as both the controller gain
Kd1 ¼ ðω2þc2ρÞcρ=ðc2ρþz2Þ and Kd1 ¼ �ðω2þc2ρÞcρ=ðc2ρþz2Þ requires cρ which is still an unknown variable.ffiffiffiffiffiffiffiffiffiffiffip
�
 Two solutions correspond to an imaginary valued controller gain Kd1 ¼ω2= �ωz;ωz40. These solutions are neglected.
�
 Two solutions correspond to an imaginary valued cρ, ωz40. These solutions are neglected because the absolute value of
a complex number has to be real valued.
�
 One solution corresponds to a negative valued damping ratio where ζ ¼ �ω�z=2z;ω4z which is neglected.

�
 The remaining solution is

ζmax
i ¼ωi�zi

2ωi
; Kd1 ¼ωi

ffiffiffiffiffiffi
ωi

zi

r
: (A.6)

which corresponds to the maximum damping (4) and controller gain (5) expressions.

In an OIFF system, the same proof procedure can be done to obtain the maximum modal damping (12) and controller gain
(13). However, this is not required as the OIFF system can be cast into a CIFF system via a change of variables. Hence, the
expressions in (4) and (5) can be re-written to incorporate the change of variables

ζ̂
max

i ¼ωi� ẑiðβÞ
2ẑiðβÞ

; Kd2 ¼ωi

ffiffiffiffiffiffiffiffiffiffi
ωi

ẑiðβÞ

r
: (A.7)
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