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This article presents the experimental characterization of a set of micro-cantilevers targeted at use in multi-frequency AFM. The aim of the
work is to design a cantilever that naturally amplifies its harmonic oscillations which are introduced by nonlinear probe-sample interaction
forces. This is performed by placing the modal frequencies of the cantilever at integer multiples of the first modal frequency. The developed
routine demonstrates the placement of the frequency of the second to fifth mode. The characterization shows a trend that lower order modes
are more accurately placed than higher order modes. With two fabricated designs, the error in the second mode is at most 2.26 % while the
greatest error in the fifth mode is at 10.5 %.

1. Introduction: Since the invention of atomic force microscope
(AFM), it has emerged as one of the most versatile tools for
interrogating and studying objects at the nanoscale [1, 2]. AFMs
have contributed to breakthroughs in areas such as nano-machining
[3], nanometrology [4], material science [5], semiconductor
manufacturing [6] and high-density date storage systems [7].

An AFM uses a micro-cantilever, with an extremely sharp probe
at its free end, to scan the surface of a sample. The probe-sample
interaction forces cause the cantilever to deflect and this deflection
is measured to observe the surface topography of the sample.

The need to study dynamic biological processes at high-speed
and with low probe-sample interaction force (< 1 nN) has led to the
development of dynamic AFM [8]. Among many forms of dynamic
AFM, tapping-mode is particularly attractive for imaging soft
samples. The tapping cantilever vibrates at its resonance frequency,
gently tapping the surface of a sample once per cycle. The vertical
feedback loop is used to regulate its oscillation amplitudes. These
oscillations are a function of the probe-sample force which in turn
is dictated by the probe-sample separation. By compensating for
those changes, the vertical feedback control signal can be used to
generate high-resolution surface topography of the sample.

Despite the success of AFM, the technique currently faces
limitation in terms of spatial resolution and quantitative
measurements [9]. It is a challenging task to simultaneously obtain
high-resolution topography and mapping of material properties
(e.g. stiffness) on soft samples. This is due to the lack of sensitivity
or difficulties in separating elastic information from the measured
signal [10]. To overcome these difficulties, multi-frequency AFM
methods have recently emerged as a new field in force microscopy
[9]. Conventional dynamic AFM methods involve the excitation
and detection of a single frequency component (usually the
fundamental mode) of the cantilever’s deflection. As a result, the
information about the sample’s properties that is encoded in the
deflection at frequencies other than the excitation frequency is
lost. Multi-frequency AFM methods involve the excitation and/or
detection of several frequencies. Different resonances (modes)
act as signal channels that provide access to different material
properties, including topography, elastic modulus, and electrostatic
and magnetic forces [11].

One approach to multi-frequency AFM is to use higher order
harmonics for imaging. The higher order harmonic components of
the cantilever’s deflection are introduced due to the nonlinear probe-
sample interaction forces. The amplitude of the harmonic vibrations
decreases by approximately 1/n (n is the order of harmonics) [9].
These small harmonic vibrations become difficult to detect.

To naturally amplify these harmonics, a number of researchers
have designed harmonic probes/cantilevers whose modal
frequencies lie at integer multiples of the fundamental frequency
[12, 13, 14, 15, 16].

Initial design approaches parameterized the cantilever in terms
of the dimensions of various topological features [12, 13, 14]. By
systematically varying these parameters while performing modal
analysis, a relationship between these parameters and the modal
frequencies is formed. This approach heavily restricts the design
space and limits the frequency placement to only a single mode.

A more flexible approach is to form a structure as set of
finite elements and, via an optimization routine, vary properties
or dimensions of the elements to design the cantilever. Cai et al.
[16] splits the cantilever into Euler-Bernoulli beam elements and
optimization sets the width of each element. The use of beam
elements ignores torsional modes and only modifies the boundary
of the cantilever, not the topology, restricting potential solutions.
Xia et al. [15] applies the level set method to place the modal
frequencies allowing for arbitrary 2D topologies to be formed.
However only the placement of one modal frequency at a high
order harmonic (the 16th) is demonstrated. Furthermore the curved
topologies produced by the level set method are difficult to fabricate
using microfabrication.

The non-convex mapping between the topology and the
modal frequencies [17] presents an issue for the gradient-based-
optimization used by Xia et al. [15] and Cai et al. [16]. For
non-convex cost functions, gradient-based-optimization tends to
converge to locally optimal solutions. And for complex cost
functions and constraints, the definition of the gradient of the cost
function is difficult to derive or doesn’t exist.

This work develops a topology optimization routine for an
AFM cantilever. The aim of the optimization routine is to place
several modal frequencies at integer multiples of the fundamental
frequency. The cantilever is modeled using the finite element (FE)
method and a genetic algorithm is used to form the topology of the
cantilever. The proposed optimization routine provides a number
of benefits over existing routines for harmonic cantilever designs.
It provides the flexibility to place multiple modal frequencies
simultaneously. This work demonstrates the placement of four
modes (the second to the fifth) at integer multiples of the first.
This includes both flexural and torsional modes. The use of
the genetic algorithm provides advantages over gradient-based
optimization routines. The genetic algorithm is a simple stochastic
search that performs a global search, easily handles the complex
relationship between the modal frequencies and the cantilever’s
topology and is well suited to handling the discrete variables that
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Figure 1 A binary matrix represents the topology of the cantilever. The
clamped edge of the cantilever is on the left side of the matrix, and a set
of elements are designated to be the tip of the cantilever.

are used to represent the topology. The optimization routine can
produce arbitrary 2D topologies and the resulting designs are easily
fabricated using microfabrication.

The article is organized as follows. Section 2 briefly outlines the
process used to model the cantilever and perform modal analysis.
Section 3 outlines how the cantilever topology is represented.
Section 4 provides details of the genetic algorithm used to modify
the topology to place the modal frequencies of the cantilever.
Section 5 describes two designs that resulted from the execution
of the optimization routine. The cantilevers were fabricated and
the experimental characterization of the designs is presented in
Section 6.

2. Mindlin plate theory and the finite element method: Of
concern in this work is the location of the modal frequencies of the
AFM cantilever. Modeling only the elastic behavior of a structure
results in a conservative system in which harmonic solutions x(t) =
u cos(ωt) exist under no external force or load. The amplitude u is
the mode shape with a modal frequency ω.

The cantilever is modeled using the Mindlin plate theory [18] to
accurately account for arbitrary two dimensional topologies and to
capture the torsional and plate modes that exist in AFM cantilevers
[19]. The finite element (FE) method [20, 18] is applied to analyze
the structure.

The cantilever is discretized as a set of four node rectangular
Mindlin plate elements. The nodes in the corners of the rectangular
element are parameterized by three degrees-of-freedom: the
deflection in the z-axis, rotation in the x-axis and rotation in the
y-axis. The x and y axes are along the width and length of the
plate respectively, and the z-axis is along the thickness of the plate.
For analysis of an individual element, the coordinate system of
the element is mapped from (x, y) to (ξ, η) by placing the origin
at the center of the element and placing the nodes at coordinates
(−1,−1), (1,−1), (1, 1) and (−1, 1). In the (ξ, η) coordinate
system, the FE shape functions employed are

Ni(ξ, η) =
1
4
(1 + ξiξ)(1 + ηiη) i= 1, . . . , 4 (1)

where (ξi, ηi) are the coordinates of the nodes. Using these shape
functions and the Mindlin plate theory, the mass and stiffness
element matrices are derived. The mass and stiffness element
matrices for each element are assembled into the system

Mẍ+Kx= 0 (2)

for degrees-of-freedom x, mass matrix M and stiffness matrix K.
The boundary conditions for the cantilever enforce zero deflection
and rotation for each node along the clamped boundary. Non-trivial
harmonic solutions x(t) = u cos(ωt) for the above system satisfies
the eigenvalue problem

Ku= λMu (λ= ω2). (3)

The matrices K and M are sparse allowing this eigenvalue problem
to be solved using the Lanczos algorithm implemented in the
software ARPACK. The numerical computations provide the modal
frequency ω and if desired the mode shape u.

3. Cantilever representation for optimization: To design the
cantilever, a fixed rectangular mesh is formed to denote the design
space. Fixed sized elements are added or removed from the mesh.
This allows the cantilever to be represented as a binary matrix as
shown in Figure 1. Each element represents a rectangular portion
of the cantilever. If the element has a value of 1, the area is filled
with material, if 0, it is void. The mesh used for the topology
representation maps directly to the mesh used for FE analysis
allowing for fast FE meshing and assembly.

The modification of the binary matrix during the optimization
routine does not guarantee that the resultant design features a
cantilever topology. To ensure that the design is feasible before
carrying out the FE analysis, an image processing routine [21] is
applied to the cantilever topology.

A region identification routine is applied to the binary matrix to
find all the separate structures in the topology. A region is deemed
connected if it includes the tip and borders the clamped edge.
nc is the number of connected regions and nd is the number of
disconnected regions. A feasible design must have nc = 1 and nd =
0. Elements with only one neighboring element, denoted hinges, are
discouraged. nh is the number of hinges and nh = 0 for a design to
be feasible. Additional metrics Ad, the total area of the disconnect
structures, and Am, the area of the smallest structure, are generated
for use in the optimization.

In the example shown in Figure 1, nc = 1, nd = 1, nh = 2 and
Ad =Am = 5.

4. Optimization with the genetic algorithm: The objective
of the optimization routine is to place the modal frequencies of
the cantilever at integer multiples of the first modal frequency.
To increase the speed of convergence, the optimization routine
is applied to a specified initial cantilever topology and moves its
modal frequencies to the nearest integer multiple of the first.

The cantilever representation x is a binary matrix as described
in Section 3. Since symmetry is enforced, x represents half of
the cantilever and the full topology is generated for the image
processing routine and FE analysis. The optimization problem

min f(x) =

M∑
i=2

wi

(
λi

λ1
− r2i

)2

(4)

s.t. x∈Ωf (5)

seeks to minimize the error in modal frequency ratios while
rejecting invalid designs. M is the number of modes to place, wi are
weights for each term in the cost function, λi are the eigenvalues of
the cantilever FE model, ri are the desired frequency ratios, Ωf is
the set of feasible cantilever designs.

The optimization problem is a binary nonlinear weighted least
squares problem. The genetic algorithm was selected due to its
natural affinity to operate on binary variables, ease at handling
nonlinear cost functions, lack of requirement of the gradient of
the cost function, ability to perform a global search and ability to
enforce the feasible set of cantilever designs. Genetic algorithms
have been applied in structural design to achieve objectives such
as compliance minimization and eigenfrequency maximization [22,
23, 21, 24, 25].

The use of the genetic algorithm simplifies the optimization
routine compared to gradient-based-optimization methods [17,
15, 16] previously applied to harmonic cantilever design. The
stochastic nature of the genetic algorithm allows for a global
search without the risk of converging to local minima and the only
requirement of the cost function f(x) is that it can be computed, no
further analysis is required.

The optimization problem is moved from a constrained to an
unconstrained problem by applying a penalty to infeasible designs.
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Algorithm 1 The cantilever design genetic algorithm.
1: procedure GENETIC ALGORITHM
2: Generate cantilevers in the initial generation
3: for each generation do
4: Evaluate the fitness of each cantilever
5: Select elite cantilevers for the next generation
6: Select cantilevers for the crossover operator
7: Crossover cantilevers to produce the next generation
8: Mutate cantilevers resulting from the crossover operator
9: end for

10: end procedure

The optimization problem is restated with the cost function [21]

min F (x) =

{
f(x) x∈Ωf

f∗ + viol(x) otherwise
(6)

where

viol(x) = Γdnd + ΓaAd + ΓmAm + Γhnh. (7)

f∗ is a large constant to ensure all infeasible designs have
a worse cost function than that of feasible designs and the
parameters Γd,Γa,Γm and Γh are weighting values to penalize
each undesirable metric in the violation function. The outline of the
genetic algorithm is shown in Algorithm 1. Many of the heuristics
employed in the genetic algorithm are a result of the small size of
the feasible set Ωf compared to the full set of binary matrices.

The initial generation of cantilevers are all identical. This was
deemed necessary as randomly generated structures tend to be
infeasible. The mutation operator is necessary to create new designs
in early generations. The genetic algorithm uses linear ranking to
evaluate the fitness of each design. Rank based fitness is particularly
important due to the large penalty f∗ given to infeasible designs.
Elitism is employed to ensure the best designs are not lost. The
parent cantilevers for the crossover operator are selected using the
stochastic universal sampling. Uniform crossover is performed to
produce the next generation of cantilevers. The mutation operator
flips bits with a low probability. Mutation is only employed to non-
void regions of the initial cantilever as the existence of material in
large void regions of the binary matrix is highly likely to produce
an infeasible design. The genetic algorithm is terminated after a
fixed number of generations and the cantilever with the lowest cost
function is selected.

5. Cantilever designs using optimization: The initial cantilever
design that is to be modified with the genetic algorithm is shown
in Figure 2 (a). The base section of this initial design is 400 µm
long and 500 µm wide. The tip section is 400 µm long and 100 µm
wide. Material properties used to model the cantilever are those of
the silicon layer from the PiezoMUMPs microfabrication process
provided by MEMSCAP [26]. Here, the thickness of the layer is
10 µm, the elastic modulus is 169 GPa, the density is 2500 kg m−3

and Poisson’s ratio is 0.29. Finite elements that are used to form
the topology are 10 µm long and 10 µm wide. The dimension of the
FEM model of the initial cantilever design is 7440.

Modal frequencies of the initial design are tabulated in Table 1
(a) and the mode shapes are shown in Figure 3. With this design, the
frequency ratio setpoints ri, introduced in Equation (4), are chosen
to be (3, 4, 8, 13).

The genetic algorithm is applied to mutate the initial cantilever
design. A population of 20 individuals is used for each generation,
elitism moves 2 individuals to the next generation, uniform
crossover swaps bits with a 50 % probability and mutation flips bits
with a 1 % probability. The optimization problem is executed for
500 generations in less than half an hour.

(a) The initial cantilever topology.

(b) The first optimized cantilever design.

(c) The second optimized cantilever design.

Figure 2 (a) Initial cantilever design that is modified with the genetic
algorithm to move its modal frequencies down to integer multiples of the
first modal frequency. (b) The execution of the genetic algorithm results in
this first optimal cantilever design. (c) Modification was made where a large
square area is preserved to allow for a piezoelectric layer to be added to the
design.

The first optimized cantilever design with a stiffness of
17.68 N m−1 is shown in Figure 2 (b). From the FE modal analysis,
the modal frequencies of the first optimized design are tabulated in
Table 1 (b). Errors in the frequency ratios are smaller compared to
the initial design, and the frequency ratios of the cantilever have
approached integer values. The checkerboard pattern results due
to the binary matrix representation of the cantilever topology. The
features size limit for the PiezoMUMPs microfabrication process is
2 µm therefore there is no difficulty etching the 10 µm square holes
in the topology.

Self-actuation and self-sensing cantilevers provide great
advantages in terms of robust Q control in tapping-mode AFM
[27]. It has the potential to reduce the physical size of an AFM
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(a) Mode 1 (flexural) 38.4 kHz (b) Mode 2 (flexural) 119 kHz

(c) Mode 3 (torsional) 176 kHz (d) Mode 4 (flexural) 342 kHz

(e) Mode 5 (flexural) 514 kHz

Figure 3 The cantilever modes of the initial cantilever topology from finite
element analysis.

by eliminating its optical components [28]. A piezoelectric layer
is often laminated on the cantilever to serve as both actuator and
sensor. In the first design proposed in this work, it is difficult to
lay a piezoelectric layer on the cantilever due to its checkerboard
pattern. As a result, modifications are made in the second design
where an area is preserved to allow space for the piezoelectric layer.
This is realized by preventing the mutation operator in the genetic
algorithm from acting within this designated area. The resultant
design is shown in Figure 2 (c). The modal frequencies of the
second design are shown in Table 1 (c). Again, the frequency ratios
lie close to integer values. The stiffness of the second optimized
cantilever design is 17.77 N m−1.

6. Experimental characterization: The cantilevers were
fabricated with the PiezoMUMPs microfabrication process
provided by the company MEMSCAP [26]. Fabrication starts with
a double-sided silicon-on-insulator wafer. The top 10 µm layer of
silicon is doped. A 0.2 µm oxide layer is grown and patterned with
a reactive ion etch (RIE) to insulate the silicon layer. Next a 0.5 µm
piezoelectric layer of aluminium nitride is deposited and patterned
with a wet etch. To provide electrical connections, a 1 µm layer of
aluminium is deposited and patterned using a lift-off process. The
device is then etched into the silicon layer using a Deep RIE. And
finally the device is released by etching through through the bottom
400 µm silicon layer using multiple etching processes. A scanning
electron microscope (SEM) (Hitachi TM3000) is used to image
the fabricated cantilevers. The displacement of the cantilevers, for
identification of the cantilever’s frequency response, was measured
using a laser Doppler vibrometer (Polytec MSA-400).

SEM images of the fabricated designs are shown in Figure 4. To
actuate the first cantilever design, the cantilever is appended to a
large base as shown in Figure 4 (a). A piezoelectric transducer is
layered over the base plate to excite the cantilever. The area under
the cantilever and the base is trenched. As a result, three sides of
the base, which are located at the edge of the trench, are fixed. It is
assumed that the effect of the base on the cantilever’s dynamics is
negligible.

Table 1 From FE modal analysis, the Modal frequencies of the
initial cantilever and the two optimized cantilevers.

(a) Modal frequencies of the initial design.

mode freq. (Hz) ratio error (%) type

1 38379 flexural
2 119088 3.103 3.43 flexural
3 175832 4.581 14.5 torsional
4 341535 8.900 11.3 flexural
5 514128 13.40 3.08 flexural

(b) Modal frequencies of the first optimized design.

mode freq. (Hz) ratio error (%) type

1 35860 flexural
2 107093 2.986 0.47 flexural
3 143833 4.010 0.25 torsional
4 287127 8.006 0.08 flexural
5 466294 13.00 0.00 flexural

(c) Modal frequencies of the second optimized design.

mode freq. (Hz) ratio error (%) type

1 35889 flexural
2 107559 2.997 0.10 flexural
3 143950 4.011 0.28 torsional
4 287208 8.003 0.04 flexural
5 466449 13.00 0.00 flexural

Table 2 Experimentally determined modal frequencies and their
ratios with respect to the fundamental frequency of the cantilever.

(a) Modal frequencies of the first cantilever design.

mode frequency (Hz) ratio error (%)

1 30000
2 92031 3.068 2.26
3 122031 4.068 1.70
4 239063 7.969 0.39
5 348906 11.63 10.5

(b) Modal frequencies of the second cantilever design.

mode frequency (Hz) ratio error (%)

1 39688
2 116875 2.945 1.83
3 150469 3.791 5.23
4 311719 7.854 1.82
5 464531 11.70 10.0

The purpose of the second optimized cantilever design was
to allow space for a piezoelectric transducer on the cantilever.
The SEM image in Figure 4 (b) shows the cantilever design
with a piezoelectric layer in the designated rectangular space.
The piezoelectric layer was assumed insignificant compared to the
cantilever silicon layer due to its small thickness and area compared
to the silicon layer. As a result, no modification of the FEM model
was made to account for the laminate structure formed by the
piezoelectric layer.

On both cantilevers, the piezoelectric transducer was excited with
a 0.3 V periodic chirp. The displacement of the induced motion was
measured at the end of the cantilever. The magnitude responses
from voltage to displacement are shown in Figure 5. The modes
of the cantilevers can be seen clearly in the measured magnitude
responses.
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(a)

(b)

Figure 4 SEM images of the fabricated (a) first and (b) second cantilever
designs.

The modes of the cantilevers were identified and their
corresponding frequency, frequency ratio with respect to the first
modal frequency and percentage error from the desired frequency
ratio are tabulated in Table 2.

For the first cantilever design, the modal frequencies have
decreased due to the presence of the base plate. Nevertheless, the
frequency ratios are relatively precise for the second, third and
fourth mode. Though ultimately to produce more accurate results
the base plate should be incorporated into the FEM modeling. For
the second cantilever design, the error in the mode 3 frequency ratio
has increased compared to the first design. Here the piezoelectric
layer has had a significant effect. The largest frequency ratio error
in both cantilevers is for mode 5. This is attributed to fabrication
tolerances, in particular, the etching process of the trench area
exhibits large dimensional variations, which is up to 50 µm in one
direction [26]. This variation shifts the clamped boundary of the
cantilever, which in turn, changes its modal frequencies.

7. Conclusion: This work has outlined the design and
characterization of two harmonic cantilevers for multi-frequency
AFM applications. These cantilevers amplify the harmonics
produced during the nonlinear probe-sample interaction forces.
Compared to previous harmonic cantilever designs, this work
demonstrates a routine which is capable of placing several
modal frequencies simultaneously at an integer multiples of the
fundamental frequency. Furthermore, the routine is simple to
implement and it can be used to place both torsional and flexural
modes. It does not require the derivation/evaluation of gradients

Figure 5 Magnitude response of the (a) first and (b) second optimized
cantilever designs. The torsional mode (mode 3) may not be observable on
this plot but is distinguishable with careful analysis of the measurements.

or differential equations. The discrete design variables provide for
quick finite element meshing.

The stochastic nature of the genetic algorithm is well suited to the
design of harmonic cantilevers. The complex relationship between
the parameters of the topology and its modal frequencies make the
black box nature of the genetic algorithm ideal to perform a global
search. Furthermore, no consideration of the optimization algorithm
is needed when parameterizing the topology. The algorithm can
handle additional design goals easily.

The experimental results show the accurate placement of mode 2,
3 and 4 in the first cantilever design and mode 2 and 4 in the second
cantilever design. Future work aims to account for fabrication and
material property variances in the optimization routine and include
modeling the piezoelectric layer and AFM probe tip to improve the
robustness and accuracy of the design routine.
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