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Abstract
Self-sensing techniques for atomic force microscope (AFM) cantilevers have several advantageous characteristics compared to the

optical beam deflection method. The possibility of down scaling, parallelization of cantilever arrays and the absence of optical

interference associated imaging artifacts have led to an increased research interest in these methods. However, for multifrequency

AFM, the optimization of the transducer layout on the cantilever for higher order modes has not been addressed. To fully utilize an

integrated piezoelectric transducer, this work alters the layout of the piezoelectric layer to maximize both the deflection of the canti-

lever and measured piezoelectric charge response for a given mode with respect to the spatial distribution of the strain. On a proto-

type cantilever design, significant increases in actuator and sensor sensitivities were achieved for the first four modes without any

substantial increase in sensor noise. The transduction mechanism is specifically targeted at multifrequency AFM and has the poten-

tial to provide higher resolution imaging on higher order modes.
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Introduction
The invention of the atomic force microscope (AFM) [1] provi-

ded for the observation of the nanoscale like no other tool

before it [2]. The technologies derived from research into the

AFM have led to developments in nanomachining [3], nanome-

trology [4], material science [5], semiconductor manufacturing

[6,7] and high-density data storage systems [8-10].

The AFM uses a sharp probe tip at the free end of a cantilever

to interrogate and image the surface of a sample [11-13]. When

using the AFM in dynamic mode [14], the cantilever is excited

at its fundamental modal frequency and the probe lightly taps

the surface of the sample. Observed changes in the amplitude,

phase or frequency shift of the cantilever’s motion correlate to

properties of the sample [15]. When closing a feedback loop

around these observables with the z-axis nanopositioner, the

controller output is routinely used to map the surface topogra-

phy of the sample. Recently, the additional excitation and detec-

tion with multiple frequencies has led to vast improvements in
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the nanomechanical characterization of the sample beyond it’s

topography [16]. For these multifrequency AFM (MF-AFM)

methods, higher order modes provide enhanced imaging proper-

ties such as higher modal stiffnesses and faster response times.

It was shown that these higher modes can be more sensitive to

material properties such as elastic modulus and damping coeffi-

cients [17-19]. Additionally, stiff cantilevers have proven to

provide high resolution imaging in ambient and liquid environ-

ments using quartz resonators [20,21].

Traditional AFM cantilever instrumentation requires a piezo-

electric stack actuator at the base of the cantilever for excitation

[3] inevitably adding additional resonances as is visible from

the so called forest of peaks [22]. These additional frequency

components make cantilever resonance tuning almost impos-

sible in liquids [23,24] and can alter the cantilever response

rendering the identification and subsequent analysis of higher

modes exceedingly difficult. For this reason, numerous inte-

grated actuation methods such as magnetic [25], photothermal

[26], resistive thermal [27], ultrasonic [28] or via a piezoelec-

tric layer [29] have been devised.

In order to measure the cantilever deflection, the optical beam

deflection (OBD) method [30] is still the widely used standard.

However, the measurement setup for the OBD method has limi-

tations, such that it requires frequent laser alignment, a cantile-

ver with a reflective surface and a certain minimum dimension

as dictated by the laser spot size. Further, the method suffers

from imaging artifacts due to optical interferences originating

from stray light reflected by the sample surface [31,32] and

bandwidth limitation of the readout circuit [33]. In contrast, a

strain-based deflection measurement offers several advantages

including a much more compact measurement setup, potential

for scalability to cantilever arrays as well as increased sensi-

tivity for smaller cantilever dimensions [34-38].

Among the existing integrated actuation and sensing methods,

piezoelectric transduction seems to be the only one capable of

simultaneously serving as an actuator and a sensor even with a

single active layer [39,40]. A set of cantilever designs exist

which integrate a piezoelectric transducer onto the cantilever as

part of the microfabrication process [41]. While good imaging

performance is achieved when operating these cantilevers at

higher order modes, the topology of the piezoelectric layer is

designed with no consideration of the modal response of the

cantilever.

A number of researchers have investigated shaping the piezo-

electric layer to actuate or sense a single mode of beam and

plate structures whilst filtering the responses of the other modes

[42-46]. The design of these transducers, denoted modal

sensors/actuators, encompasses the modeling and modal analy-

sis of the structure in order to determine the modal frequencies

and deflection mode shapes. Here, the overall deflection is the

linear combination of mode shapes which have a fixed spatial

distribution. Moreover, there exists a linear mapping from the

deflection of the structure to the charge developed on the piezo-

electric layer and hence the charge response is related to the

spatial distribution of each mode shape. If the mode shapes are

orthogonal, an analytical approach can be used to shape the

piezoelectric layer. Otherwise optimization is used to shape the

piezoelectric layer to minimize response to the undesired

modes.

This work formulates the design of the topology of the piezo-

electric layer on an AFM cantilever to maximize the actuator

gain and sensor sensitivity with respect to the cantilever’s

higher order modes. Compared to previous work on modal

sensor/actuators [42-46], the design specification of the

presented work is to enhance the desired modes rather than

suppress the undesirable modes. This difference leads to funda-

mental changes in the design strategy, resulting piezoelectric

layer topology, instrumentation, actuator characteristics and

sensor characteristics. Indeed, the justification for this altered

approach comes from the fundamental reasons for multifre-

quency AFM which is based on the assumption that additional

information is encoded in these higher modes. To enable the op-

timization of the piezoelectric response to higher order modes,

plate theory with finite element analysis is used to determine the

spatial distribution and polarity of the transducers response for a

given mode shape. Using this result, the piezoelectric layer is

split into isolated regions whose individual responses construc-

tively combine in order to maximize the actuator gain/sensor

output.

The remainder of the paper is organized as follows. Section

’Modal analysis of the piezoelectric cantilever’ outlines the

modeling approach to determine the spatial charge distribution

of the piezoelectric transducer as a function of its modal

response. In section ’Proposed piezoelectric cantilever designs’,

results of this analysis are used to determine the design of the

piezoelectric actuator arrangements to maximize the transducer

response for the first four modes of a cantilever with a stepped

geometry. In section ’Instrumentation of the cantilever’ the

working principle and modeling of the instrumentation is

presented. The experimentally determined actuator and sensor

transfer functions are presented in section ’Experimental

Results’, which highlight the actuator gain and sensor sensi-

tivity improvements of the proposed designs. In addition, this

section presents and discusses the noise characterization of the

sensor. The cantilever designs presented in this work target a

single mode each. Section ’Instrumentation for multifrequency
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AFM’ outlines a method to design and instrument the cantile-

vers to target multiple modes.

Results and Discussion
Modal analysis of the piezoelectric cantilever
Figure 1 shows the silicon cantilever analyzed in this work. The

dimensions in the diagram are stated in Table 1. The benefit of

the stepped geometry of the cantilever is that higher modes are

more closely spaced compared to rectangular cantilevers

[47,48] and higher mode deflections are amplified [49] which

benefits higher harmonic/higher mode applications [41].

Figure 1: The dimensions of the basic cantilever design. The gray
zone is the piezoelectric layer. The zoomed in section of a plate shows
the out of plane deflection w and the rotation of the normal of the canti-
lever’s neutral plane (N.P.) about the y-axis θy. The rotation of the
normal of the cantilever’s neutral plane about the x-axis θx is equiva-
lent to θy for a section in the yz-plane. The fixed boundary of the canti-
lever is shown to the left of the image.

Table 1: Cantilever dimensions shown in Figure 1.

Parameter Value

l1 400 μm
l2 400 μm
w1 100 μm
w2 500 μm
h 10 μm

The cantilever is modeled using Mindlin plate theory and a

finite element (FE) model is developed to perform modal analy-

sis [50,51]. Modal analysis using the FE model provides a solu-

tion to the out-of-plane deflection w(x,y,t) and the rotations of

the normal of the cantilever’s neutral plane around the x-axis

and y-axis, θx(x,y,t) and θy(x,y,t) respectively. These quantities

are shown in Figure 1. Assuming a thin piezoelectric layer, the

response of the piezoelectric transducer is proportional to the

strain at the surface of the cantilever. The in-plane strains at the

surface of the cantilever are [51]

(1)

(2)

(3)

The electrodes are uniformly distributed on both sides of the

piezoelectric layer to generate electric fields only in the z-axis.

Therefore, the electric displacement in the piezoelectric materi-

al is [52]

(4)

where d31, d32 and d36 are the piezoelectric coefficients.

Assuming the piezoelectric material is poled along the z-axis

and is homogeneous, the coefficients d31 = d32 = d and d36 = 0

[52,53]. The charge produced is the integral of the electric dis-

placement, that is

(5)

(6)

The domain Ω is the area of the piezoelectric layer.

Modal analysis with the FE model evaluates harmonic solu-

tions for θx and θy of the form

(7)

(8)

The spatial functions (x,y) and (x,y) are the mode shapes

of cantilever.

In the following analysis, the domain Ω from Equation 5 is

restricted to the domain Ae of a single rectangular element from

the mesh used in the FE model. The modal analysis calculates

the rotations  and  at the four nodes of the element. The

mode shapes over an element are
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(9)

(10)

where N(x,y) are the shape functions [50,51]

(11)

where the dimensions of the rectangular element are 2a× 2b and

the origin is placed at the center of the rectangular element.

By substituting the harmonic solution into Equation 5 the

charge response of the piezoelectric transducer over the ele-

ment is

(12)

where

(13)

Be represents the response due to the spatial nature of the piezo-

electric layer in the xy-plane for a given mode. This expression

is evaluated using Gaussian quadrature. Since the shape func-

tions are quadratic, the derivatives are linear. This allows the

exact integral to be evaluated with Gaussian quadrature at the

midpoint of the rectangular element. Evaluating Be for each ele-

ment over the entire cantilever provides the charge response for

a given mode.

Proposed piezoelectric cantilever designs
The aim of the proposed cantilever designs is to increase the

actuator gain and sensor sensitivity of the piezoelectric trans-

ducer to flexural and torsional modes. First, using the finite ele-

ment method, modal analysis is performed on the cantilever

topology shown in Figure 1 to calculate the mode shapes. For

mode 1 to mode 4 (M1–M4), the simulated mode shapes of the

cantilever are shown in Figure 2a–d. The modal frequencies are

38.3 kHz, 119 kHz, 176 kHz, and 342 kHz. M1, M2 and M4 are

flexural modes while M3 is a torsional mode. The modal analy-

sis provides the mode shapes for the deflection and rotations at

the nodes of the FE mesh. Using these values, the quantity Be is

calculated for each element in the mesh.

If the sign of Be for two elements are the same, the response

over the two elements adds constructively. If of opposite sign,

the response over the two elements adds destructively. Based on

the sign of Be, the piezoelectric layer is split into two, denoted

the positive and negative transducer. By actuating and sensing

each separately and combining the responses with opposite

polarities, the combination of responses is purely constructive.

This improves the actuation and sensing by the transducer to its

targeted mode.

This design procedure can be posed as an optimization problem.

For the i-th finite element in the cantilever mesh, the associated

Be is denoted  The piezoelectric material on each finite ele-

ment is observed in either a positive polarity or negative

polarity. A design parameter  is introduced indicat-

ing this polarity. If χi = 1 the finite element is part of the posi-

tive transducer otherwise if χi = −1 it is connected to the nega-

tive transducer. Therefore, maximizing the response of the

piezoelectric layer is equivalent to the optimization problem

(14)

(15)

The solution to this optimization problem is χi = sign( ).

Figure 2i–l shows the split piezoelectric arrangement for the

first four modes of the cantilever. In flexural modes, a signifi-

cant θy is observed while θx is comparatively small. From Equa-

tion 1 and Equation 2 this results in the strain εxx dominating

the charge response while the effect of εyy is insignificant over

most of the cantilever area. Though in a few small areas on the

cantilever the opposite occurs. In these locations, particularly at

the tip of the cantilever, εyy dominates the charge response

while εxx becomes insignificant. This causes the presence of the

small electrodes seen in Figure 2i–l.

The fabricated cantilever designs are shown in Figure 2m–p.

The cantilevers are fabricated using the PiezoMUMPs micro-

fabrication process available from the company MEMSCAP Inc

[54]. The device layer is a 10 μm thick layer of single-crystal-

silicon deposited on a (100) oriented wafer. A 0.5 μm layer of
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Figure 2: (a)–(d) The first four mode shapes of the cantilever from the FE model. (e)–(f) The modes measured using a laser vibrometer (Polytec
MSA-400). (i)–(l) The piezoelectric arrangement to maximize the response of the transducer to each mode. The gray electrodes induce a charge in
the opposite polarity to the black electrodes. (m)–(p) The fabricated cantilever designs.

AlN and a 1 μm layer of aluminium is deposited on the

device layer. A particular limitation of this process in the

context of AFM is that it does not allow for the fabrication

of tips preventing the demonstration of imaging using these

cantilevers.

The material properties of the silicon used in the analysis are an

elastic modulus of 169 GPa, density of 2500 kg m−3 and

Poisson’s ratio of 0.29. To account for inaccuracies in these pa-

rameters, the design routine was executed with varying parame-

ters to evaluate their affect on the piezoelectric layer topology.

Since the piezoelectric material was not included in the mechan-

ical modeling, the thickness of the silicon layer was also

varied. It was found that changes in the mode shape, and thus

boundary between the two transducers, was insignificant for

densities of 1000–4000 kg m−3, elasticities of 120–280 GPa,

for Poisson’s ratio of 0.2–0.4 and for a silicon thickness of

8–15 μm. This results from the relative invariance of the mode

shape with material properties. Rather, the mode shape is more

strongly associated with the geometric shape of the cantilever.

The four cantilevers in Figure 2m–p are denoted C1, C2, C3

and C4. The piezoelectric layer on each cantilever is designed to

optimally actuate and sense M1–M4 respectively. Metal traces

forming electrical connections run down the center of the canti-

lever. This splits some piezoelectric layers in two and these split

layers are wire-bonded back together.

Instrumentation of the cantilever
Instrumentation design
The microfabrication process used to fabricate the cantilevers

requires the two piezoelectric transducers share a common ter-

minal [54]. The common terminal has to be grounded to electri-

cally isolate them from each other. Therefore, the actuation and

sensing circuits are applied to a grounded load. Two instrumen-

tation arrangements are examined, both shown in Figure 3. The
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Figure 3: The instrumentation circuits. (a) The voltage driven arrange-
ment. (b) The charge driven arrangement.

first denoted the voltage driven arrangement, is a grounded load

charge sensor with the voltage across the device controlled for

actuation. The second denoted the charge driven arrangement, is

a grounded load charge amplifier and the voltage across the

transducer provides the sensor output.

In the voltage driven arrangement [55], an op-amp controls the

voltage across the piezoelectric actuator. The charge which

flows from the piezoelectric sensor flows into the capacitor Cs.

A differential amplifier at the output measures the voltage

across Cs to provide a measurement of the charge. The resistors

Rs and Rp set the DC biases in the circuit. The FET input

op-amp (OPA656 from Texas Instruments) is used to prevent

loading of the piezoelectric transducer. The component values

used are Cs = 10 pF, Rs = 1 MΩ and Rp = 10 MΩ.

In the charge driven arrangement [56], the circuit controls the

charge across the fixed capacitor Cs. An equal charge flows into

the piezoelectric transducer as it is in series with Cs. Similar to

the voltage driven arrangement, the resistors bias the circuit and

the FET op-amp prevents loading of the piezoelectric device.

The component values which determine cut-off frequency and

gain are chosen as Cs = 100 pF, Rs = 10 MΩ and Rp = 1 MΩ. To

prevent oscillations in the instrumentation circuit, an integrator

is used to control the charge on Cs. The integrator’s high gain at

low frequencies allows the charge to be accurately controlled

and their low gain at high frequencies prevents oscillations. The

gain of the integral controller ki is set to maintain Vi = Vs over a

bandwidth that contains the modes of interest.

Instrumentation modeling
An applied voltage to the piezoelectric transducer excites

motion in the cantilever. The mapping from voltage to displace-

ment is modeled as a set of second order modes. The transfer

function from voltage V to displacement d is [52]

(16)

where for the i-th mode, ωi is the natural frequency, Qi is the

quality factor and αi is the gain.

While under motion, the strain on the piezoelectric transducer

induces charge on its electrodes. This effect is modeled as an

internal voltage source Vp in series with a capacitor Cp as

shown in Figure 4. The transfer function from the applied

voltage V to the piezoelectric voltage Vp is

(17)

The piezoelectric voltage allows for the electric sensing of the

motion of the cantilever. Considering the model in Figure 4, the

mapping from the voltage applied to the charge Q generated

is [22]

(18)

There are two terms in this transfer function. The charge associ-

ated with the first term is called the feedthrough charge and the

charge associated with the second term is called the motional

charge. The feedthrough charge flows due to the capacitive

structure of the piezoelectric transducer and the motional charge

flows due to the strain and is used to observe the motion of the

cantilever.

Figure 4: The electrical model of a piezoelectric device.

With the piezoelectric transducer incorporated into the voltage

driven circuit, the transfer function of the instrumentation is
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(19)

The model can be simplified by considering the dynamics in the

neighborhood of the i-th cantilever mode. First, the transfer

function of the feedthrough component is identified by letting

Gvv = 0. The resistance Rp and Rs are chosen such that the pole

and zero in the feedthrough transfer function are much lower

than the modal frequencies of the cantilever. Then by consid-

ering only the frequencies in the passband (i.e., for ω > 1/RsCs

and ω > 1/RpCp, s = jω), the system Gva becomes

(20)

(21)

When using the piezoelectric transducer for real-time sensing

such as during AFM imaging, the feedthrough component has

to be estimated and removed from the sensor response to maxi-

mize the dynamic range of the sensor. This can be done by

using model-based feedforward compensators, implemented in

either analog or using switched capacitor prototyping systems

such as a Field Programmable Analog Arrays (FPAAs) [39,40].

Since the cantilevers proposed in this work do not feature tips

for AFM imaging, the feedthrough is identified and removed

off-line to highlight the increase in sensor sensitivity.

The charge driven arrangement is the inverse of the voltage

driven arrangement. The inversion maintains the same structure

as in Equation 21, however the resulting transfer function shows

flipped poles and zeros (compare Figure 7) as well as slightly

differing gains, quality factors and resonance frequencies due to

the internal feedback nature in Equation 20 [40]. The transfer

function in the neighborhood of the cantilever’s i-th mode is

(22)

(23)

Experimental results
Experimental setup
Figure 5 shows the experimental setup to characterize the

performances of cantilever designs (C1 to C4). The positive and

negative transducers are connected to separate instrumentation

circuits which are actuated and sensed in the opposite polarity

to constructively combine the two responses. For displacement

measurement, a vibrometer (Polytec MSA-400) is used to detect

the motion of the cantilever. The actuator gains (Vi→d) are

measured in two locations which are shown in Figure 2m. Mea-

surements are made at location 1 for flexural modes M1, M2

and M4 and location 2 for the torsional mode M3.

Figure 5: The experimental setup to characterize the cantilever
designs.

The system response (Vi→Vo) is the combination of a motional

and feedthrough component. To observe the motional compo-

nent feedthrough cancellation is performed offline. A third

order transfer function is fitted to the measured frequency

response in a small band around the mode of interest. The third-

order model accounts for a second order mechanical system

with a first order feedthrough system in parallel. Identification

is performed using the subspace method [57]. The identified

feedthrough is subtracted from the measurements to produce the

system response with feedthrough cancellation (Vi→Vd). Due to

small phase shifts from the op-amp dynamics and unmodeled

electrical parasitics, feedthrough cancellation can only be accu-

rately performed in a narrow-band in the vicinity of the mode of

interest.

To evaluate the effect of the proposed piezoelectric topologies,

the magnitude responses from Vi to both Vd and d are measured

for each cantilever and compared to the response of C1. C1 is

used as the reference cantilever because it is considered a stan-

dard topology with the piezoelectric layer covering the entire

cantilever.

Discussion of results
From the magnitude frequency response of C1 (Figure 6a), the

frequency of the cantilever’s first four modes are at 44.02 kHz,

133.7 kHz, 186.8 kHz and 402.9 kHz respectively. Fabrication

tolerances and the mechanical action of the piezoelectric layer
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Figure 6: Voltage drive magnitude responses of the cantilevers C1–C4. (a)–(d) The responses from input voltage Vi to displacement d. The flexural
modes of C1, C2, and C4 are measured at location 1 (L1). The torsional modes of C1 and C3 are measured at location 2 (L2) (see Figure 2m).
(e)–(h) The responses from Vi to output voltage Vo. To show the resonance more clearly, the plots for C1–C4 are moved to 0 dB with a shift of
−15.21 dB, −18.85 dB, −16.6 dB and −16.57 dB respectively to account for the affect of different values of Cp in each cantilever. (i)–(l) The responses
from Vi to sensor output Vd. (b)–(d), (f)–(h) and (j)–(l) show higher resolution plots of the modes.

account for the frequency differences compared to the FE

model in section ’Proposed piezoelectric cantilever designs’.

In Figure 6a–d (voltage driven) and Figure 7a–d (charge

driven), the frequency responses from the input voltage Vi to the

displacement d are shown. The magnitude of the response at

each mode is tabulated in Table 2a and c. Compared to C1 in

the voltage driven arrangement, C2 provides a 20.45 dB

increase in actuation gain for mode 2. C3 provides a 42.05 dB

increase in actuation gain for mode 3. C4 provides an 10.04 dB

increase in gain for mode 4. Compared to C1 for the charge

driven arrangement C2 provides a 22.04 dB increase in actua-

tion gain for mode 2. C3 provides a 47.01 dB increase in actua-

tion gain for mode 3. C4 provides an 14.56 dB increase in gain

for mode 4.

In Figure 6e–h and Figure 7e–h, the frequency responses from

input voltage Vi to output voltage Vo are shown. Here substan-

tial feedthrough is observed which dominates in comparison to

the motional response of the system. In a neighborhood around

the modes of interest, a third order system is identified. Transfer

functions were identified around C1 mode 2, C1 mode 4, C2

mode 2, C3 mode 3 and C4 mode 4. The motional response for

C1 mode 3 was unobservable due to the small magnitude of
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Figure 7: Charge driven magnitude responses of the cantilevers C1–C4. (a)–(d) The responses from input voltage Vi to displacement d. The flexural
modes of C1, C2, and C4 are measured at location 1 (L1). The torsional modes of C1 and C3 are measured at location 2 (L2) (see Figure 2m).
(e)–(h) The responses from Vi to output voltage Vo. To show the resonance more clearly, the plots for C1–C4 are moved to 0 dB with a shift of
−3.984 dB, −12.42 dB, −14.46 dB and −14.50 dB respectively to account for the affect of different values of Cp in each cantilever. (i)–(l) The
responses from Vi to sensor output Vd. (b)–(d), (f)–(h) and (j)–(l) show higher resolution plots of the modes.

resonance response. The parameters of Equation 21 and Equa-

tion 23 for each of these transfer functions are tabulated in

Table 3.

The resulting magnitude responses with the feedthrough cancel-

lation from input voltage Vi to sensor output Vd, are shown in

Figure 6i–l (voltage driven) and Figure 7i–l (charge driven).

Around each mode the feedthrough is removed and the

motional component in the neighborhood of the modal frequen-

cy is revealed. The magnitudes of the motional components at

each modal frequency are tabulated in Table 2b,d. For the

voltage driven arrangement C2 increases the system response of

mode 2 by 37.98 dB. C4 increases the system response to mode

4 by 17.16 dB. For the charge driven arrangement C2 increases

the system response of mode 2 by 42.31 dB. C4 increases the

system response to mode 4 by 25.65 dB.

Noise discussion
Amplitude modulation AFM always requires an actively driven

cantilever and subsequent demodulation using a lock-in ampli-

fier. Therefore, the subsequent noise characterization is for the

demodulated amplitude signal. A 4th-order low-pass filter with

cut-off frequency fc = 1 kHz is employed in the lock-in ampli-

fier (Zurich Instruments, HF2LI). The voltage noise density plot
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Table 2: Sensitivities of the reference cantilever C1 compared to the cantilevers with optimal transducer topologies.

(a) Voltage driven actuator gain (Vi→d).
mode Reference gain [μm V−1] Optimized gain [μm V−1] Improvement [dB]

M1 (C1) 16.97 – –
M2 (C1) 2.968 × 10−1 (C2) 3.125 20.45
M3 (C1) 1.522 × 10−2 (C3) 1.927 42.05
M4 (C1) 2.667 × 10−1 (C4) 8.475 × 10−1 10.04

(b) Voltage driven magnitude of system responses with feedthrough cancellation (Vi→Vd).
mode Reference gain [V V−1] Optimized gain [V V−1] Improvement [dB]

M1 (C1) 3.265 – –
M2 (C1) 1.910 × 10−2 (C2) 1.514 37.98
M3 – (C3) 7.247 × 10−1 –
M4 (C1) 1.471 × 10−1 (C4) 1.061 17.16

(c) Charge driven actuator gain (Vi→d).
mode Reference gain [μm V−1] Optimized gain [μm V−1] Improvement [dB]

M1 (C1) 25.08 – –
M2 (C1) 5.034 × 10−1 (C2) 6.373 22.04
M3 (C1) 2.626 × 10−2 (C3) 5.890 47.01
M4 (C1) 4.999 × 10−1 (C4) 2.673 14.56

(d) Charge driven magnitude of system responses with feedthrough cancellation (Vi→Vd).
mode Reference gain [V V−1] Optimized gain [V V−1] Improvement [dB]

M1 (C1) 9.385 × 10−1 – –
M2 (C1) 5.687 × 10−3 (C2) 7.423 × 10−1 42.31
M3 – (C3) 6.251 × 10−1 –
M4 (C1) 4.128 × 10−2 (C4) 7.910 × 10−1 25.65

Table 3: Parameters of the identified transfer functions around the modes.

(a) Voltage driven system parameters.
Cp/Cs Qi fi [kHz] δiαi

C1 (M1) 5.433 408.6 43.92 1.395 × 10−3

C1 (M2) 5.716 316.6 133.5 9.630 × 10−6

C1 (M4) 5.756 358.9 402.9 7.074 × 10−5

C2 (M2) 8.698 309.0 130.7 5.545 × 10−4

C3 (M3) 6.718 608.9 175.9 1.761 × 10−4

C4 (M4) 6.728 381.0 404.3 4.144 × 10−4

(b) Charge driven system parameters.
Cs/Cp Qi

* fi* [kHz] δi
*αi

*

C1 (M1) 1.599 390.3 43.94 1.506 × 10−3

C1 (M2) 1.602 277.4 133.8 1.260 × 10−5

C1 (M4) 1.598 371.1 402.9 6.562 × 10−5

C2 (M2) 4.370 290.3 130.7 5.811 × 10−4

C3 (M3) 5.613 578.7 176.0 1.869 × 10−4

C4 (M4) 5.434 386.1 404.4 3.077 × 10−4
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Figure 8: Amplitude noise density spectra of the output voltage Vo for the reference cantilever C1 and optimized cantilevers C2–C4. (a) Voltage
driven instrumentation, (b) charge driven instrumentation.

Table 4: Sensor sensitivities and noise performance of non-optimized and optimized higher order modes.

(a) Voltage driven arrangement.
C1 M1 C1 M2 C1 M4 C2 M2 C3 M3 C4 M4

Sensor sensitivity [V/μm] 0.192 0.0644 0.551 0.484 0.376 1.25
RMS voltage noise [μV] 9.6959 5.4284 6.2378 7.0169 13.9297 8.2834
RMS deflection noise [pm] 50.4 84.3 11.3 14.5 37.0 6.62

(b) Charge driven arrangement.
C1 M1 C1 M2 C1 M4 C2 M2 C3 M3 C4 M4

Sensor sensitivity [V/μm] 0.0374 0.0113 12.11 8.586 9.422 3.379
RMS voltage noise [μV] 5.7846 2.5007 2.6202 5.4924 5.3145 4.5816
RMS deflection noise [pm] 154.6 221.4 31.73 47.16 50.07 15.48

of the sensor output is obtained by sampling the demodulated

amplitude at fs = 57.6 kHz and calculating a power spectral den-

sity estimate using Welch’s segment averaging estimator with

64 segments. The results are presented in Figure 8.

The RMS voltage noise present in the sensor output voltage is

obtained by integrating the noise density (Figure 8) from 0 to

fs/2. The deflection noise is obtained by dividing the voltage

noise by the identified sensor sensitivity. The sensor sensitivi-

ties are obtained by dividing the system response (Table 2b,d)

by the actuator gain (Table 2a,c) for each mode. The voltage

noise measurements are made before the feedthrough cancella-

tion, therefore the deflection noise results are for the case where

the feedthrough cancellation is noiseless. The sensor sensitivi-

ties, sensor output voltage noise and sensor output deflection

noise are tabulated in Table 4.

Due to the higher sensor sensitivities, the deflection noise has

decreased demonstrating an improved sensor performance re-

sulting from shaping the piezoelectric layer. This result occurs

when noise sources from the sensor and instrumentation domi-

nate the noise output rather than thermomechanical noise. Ther-

momechanical noise is amplified by the sensor sensitivity and

since an associated increase in noise was not observed, this

noise source must be insignificant compared to the noise from

the instrumentation.

Instrumentation for multifrequency AFM
The cantilevers fabricated and characterized in this work each

enhance the sensitivity of a single mode. To facilitate multifre-

quency AFM, it is preferable to have a cantilever optimized to

actuate and sense multiple modes and in addition allow them to

be transduced simultaneously with maximized sensitivities.

Given the linear nature of the cantilever and instrumentation,

superposition can be used to achieve this. For example, the can-

tilever C2 has the potential to optimally actuate and sense

modes M1 and M2 simultaneously. In the setup shown in

Figure 9, the M1 input voltage Vi1 is driven at the M1 reso-
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Figure 9: To perform multifrequency AFM using cantilever C2 with
modes M1 and M2 simultaneously, the presented extension to the
instrumentation is employed.

nance frequency and is applied to both piezoelectric trans-

ducers with the same polarity to optimally actuate the cantile-

ver for M1. The outputs of the two instrumentation circuits are

combined with the same polarity to produce the optimized M1

output voltage Vo1 which maximizes the sensed response for

M1. The M2 input voltage Vi2 is combined with Vi1, however,

for the second transducer Vi2 is combined with a negative

polarity to optimally actuate M2. The optimal output voltage for

M2, Vo2, results from taking the difference between the outputs

of the two instrumentation circuits.

This principle can be extended for the design of a piezoelectric

cantilever used to actuate and sense multiple modes. The design

example for the first four modes is shown in Figure 10. By

considering the union of cantilevers C1–C4, the resulting canti-

lever has 10 separate piezoelectric transducers each with its

own instrumentation circuit. The M1–M4 input voltages

Vi1–Vi4, each driven at their respective modal resonance

frequencies, are applied to the cantilever on each transducer

with a positive polarity for black electrodes (refer to Figure 10)

and a negative polarity for white electrodes. The outputs of the

instrumentation circuits would be combined in the same fashion

for the optimized output voltages Vo1–Vo4. In comparison to

using a single piezoelectric transducer with a sum of sinusoids

excitation, the multi-electrode design provides increased ampli-

tudes at the expense of more complex instrumentation.

Conclusion
An AFM cantilever with a piezoelectric layer is a versatile

transducer for both actuation and displacement sensing. As the

response of the active layer is a function of the strain over the

surface of the cantilever, careful electrode layout has to be em-

ployed. Specifically in multifrequency AFM, the cantilever is

excited at higher order modes for which the spatial distribution

of the strain cause portions of the piezoelectric layer to contrib-

ute destructively to the transducer’s overall response. In this

Figure 10: The layout of the piezoelectric layer on the cantilever to
optimally actuate and sense M1–M4. The cantilever has 10 separate
transducers. The voltage on each transducer is a combination of four
voltages to actuate each mode. These four voltages are combined in
the positive polarity for the black electrodes and in the negative polarity
for white electrodes. The sensor outputs for each transducer are
combined in the same fashion for each mode.

work, we have outlined a design method which provides a

systematic way of increasing the actuator gain and sensor sensi-

tivity of the self-sensing piezoelectric cantilever by considering

the spatial distribution of the strain for a given mode. The

design consists of splitting up the piezoelectric layer into

several transducers, whose individual responses are construc-

tively combined. The resulting three terminal piezoelectric

device requires additional circuitry for instrumentation com-

pared to a typical two terminal piezoelectric cantilever. For this

reason, we have proposed a grounded load charge sensor and a

grounded load charge amplifier to realize the self-sensing

implementation. The experimental results show that by shaping

the electrodes on the piezoelectric layer, significant increases in

actuator gain and sensor sensitivity are attained. Furthermore,

torsional modes are strongly observed in contrast to a cantile-

ver with an evenly distributed piezoelectric layer. Despite the

additional circuitry, no significant increase in noise was ob-

served. Future work will focus on the fabrication of cantilevers

with tips with the aim of exploiting the proposed technique to

potentially perform higher precision imaging in multifrequency

AFM.
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