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Abstract— In this paper, we propose a novel approach for
tracking of piecewise linear trajectories, such as triangular and
staircase waveforms. We derive state and input transformations,
which result in closed-loop error dynamics driven by a series of
impulses. The proposed control structure takes the form of an
output-feedback-feedforward system that is straightforward to
implement. In contrast to the recently proposed tracking control
methods for such trajectories, the closed-loop stability is not
affected by the frequency of the desired triangular reference.
The method is implemented on a nanopositioner serving as the
scanning stage of an atomic force microscope.

Index Terms— Feedback–feedforward, impulsive state
multiplication (ISM), input and state transformations (ISTs),
triangular references.

I. INTRODUCTION

TRACKING of piecewise linear reference signals is a
requirement in many applications. An example is the

triangular waveform which is usually used as the desired refer-
ence signal for the fast lateral axis in raster scanning applica-
tions, such as scanning tunneling microscope and atomic force
microscope (AFM) [1], [2], optical scanners [3], selective laser
sintering systems [4], and in probe-based data storage devices
[5]. In addition, any desired trajectory with arbitrary profile
can accurately be approximated by a piecewise linear one.

In [6], tracking of triangular references was demonstrated
by a signal transformation approach (STA), where signal
transformation mappings were included at the plant input and
output. Assuming a unity dc gain for the plant in STA, the
mappings are designed to convert a ramp reference signal
to the triangular reference and vice versa. Then, a feedback
controller incorporating a double integrator was designed
in [6] to have the plant with the transformation mappings
track the ramp reference, while the plant output follows the
triangular reference. A key benefit of STA is that the closed-
loop bandwidth with the double integral controller can be very
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small compared with the bandwidth of an ordinary feedback
system with a comparable tracking performance. The low
closed-loop bandwidth is important in many applications, such
as nanopositioning systems, where the amount of measurement
noise affecting the plant through the feedback system can limit
the positioning accuracy.

A drawback of STA is that the transient performance or
even the stability of closed-loop systems is deteriorated as the
frequency of the triangular reference increases [7]. This issue
has not been resolved in the more advanced versions of STA,
such as impulsive state multiplication (ISM), initialized-STA,
and STA for arbitrary references [8]–[14]. We can confirm
this deficiency by considering the stability criteria of STA and
ISM, such as [7, Corollary 3] and [15, eq. (6)]. These criteria
put limitations on the maximum magnitude of eigenvalues or
norm of matrix exponential terms, whose arguments are the
product of the stable closed-loop system matrix A and the
half period T of the triangular reference. As a result, the
stability criterion may not be satisfied as the frequency of the
reference increases. This dependence of stability condition on
the reference signal is mainly due to the switching actions
or signals in ISM or STA that suddenly change the feedback
loop in every half period of the triangular reference. As the
reference frequency increases, the loop switching happens
more frequently, deteriorating the stability of the hybrid system
in the long run. Another important factor that can produce
undesirable control performance or even instability in STA
and ISM hybrid systems, while the closed-loop system matrix
is stable, is the existence of dominant zeros in the plant or
controller [7, Sec. 5.1].

In this paper, we propose a novel controller design method
for tracking of piecewise linear references using input and state
transformations (ISTs). The method allows a small control
bandwidth to reduce the impact of measurement noise on the
plant output while retaining closed-loop stability independent
of the reference signal. We design ISTs such that the error
dynamics are driven only by the second derivative of the
reference, which consists of impulses at the breaking points
of the reference profile. For a well-damped plant, the feed-
back control system comprises a double-integrator controller
and a feedforward signal with no additional state estimation
requirements. Compared with the STA and ISM methods,
the feedback structure in IST method is much simpler and
no signal transformation or switching block is incorporated
within the loop. Hence, the transient performance and stability
are not affected by the frequency of the reference signal.
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Fig. 1. 1-DoF feedback control system.

The corresponding control design procedure utilizes basic
information about the plant, such as the nominal value of dc
gain and dominant poles and zeros of the plant. In addition,
the method relies on much less knowledge of the plant
parameters and is simpler to design and implement com-
pared with the contemporary feedback–feedforward control
strategies [16], [17].

This paper is organized as follows. The control problem is
described in Section II. In Section III, we derive ISTs that
facilitate the solution to the control problem. The resulting
transformations are used in Section IV to solve the control
problem by the proposed IST method. In Appendix A, we
show that the required parameters in the IST method are
obtained by alternative expressions from a low frequency
approximation of the plant transfer function. The simulations
conducted in Section V illustrate the superiority of the IST
method over the ISM and high-gain (HG) controllers in the
presence of measurement noise. In Section VI, we experi-
mentally implement the IST method on the lateral axes of a
nanopositioner for tracking of triangular and continuous stair-
case reference signals. This section also addresses the adverse
effect of cross coupling on the tracking error and a method to
compensate for it. In Section VII, the IST controllers are used
to scan a sample attached to the nanopositioner and obtain
AFM images of the sample in constant-force-contact-mode.
More details on the experimental setup have been provided in
Appendix B.

II. PROBLEM STATEMENT

Consider a one-degree-of-freedom (1-DoF) feedback control
system as shown in Fig. 1, where the closed-loop system
is internally stable and provides zero steady-state tracking
error to a constant reference signal. Such feedback system is
identical to the ordinary feedback systems in the STA and ISM
methods when signal transformation mappings are reduced to
identity mappings in STA method or the state multiplication
matrix and the feedforward gain are reduced to an identity
matrix and zero in the ISM method, respectively [7], [15].
However, the desired reference signal is a piecewise linear
waveform rpw(t), which is assumed continuous and bounded.
By piecewise linear, we mean that the time profile of the
reference signal varies linearly with time during each time
interval t ∈ (Tk−1, Tk), as shown by the typical profile in
Fig. 2. If the plant is open-loop stable with well-damped
dominant poles, the integrator gains ki and kii in the following
double integral controller are easily obtained with adequate

Fig. 2. Typical piecewise linear reference signal.

stability margins [7]:

C1(s) = ki s + kii

s2 . (1)

In addition, the gains can be tuned to realize a desired low
closed-loop bandwidth, while zero steady-state tracking error
is guaranteed for a constant or ramp reference. However, track-
ing error of the 1-DoF feedback system with low bandwidth
may not be acceptable for a piecewise linear reference. In the
absence of noise and disturbances, the state dynamics in the
1-DoF system are only driven by the reference signal rpw,
while the second time derivative of the reference signal is
zero in almost all times except for impulses at specified time
instants Tk , k ∈ {1, 2, 3, . . .}. This is described as

r̈pw =
∞∑

k=0

qkδ(t − Tk) (2)

where qk = mk+1 − mk is the abrupt change in the slope
of the reference signal at t = Tk and m0 = 0. Hence, it is
plausible to seek appropriate transformations through which
the closed-loop dynamics of transformed states are possibly
driven only by the second derivative of reference rpw, which
is zero most of the time. The required transformations should
also represent the tracking error as a linear combination of
the transformed states, exclusively. More specifically, if X
represents the transformed state vector of the closed-loop
system, it would obey the following state dynamics:

Ẋ = AX + Er̈pw (3)

y = C X (4)

where y = y − rpw is the tracking error, and A, E , and C
are state-space matrices of the closed-loop system after the
transformations are applied.

III. SYNTHESIS OF TRANSFORMATIONS

Assume that the individual state-space representations of the
nominal plant and controller in the 1-DoF system are as

Ẋ p = A p X p + Bpu (5)

y = Cp X p (6)
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and

Ẋc = Ac Xc + Bc(r − y) (7)

u = Cc Xc + Dc(r − y) (8)

where measurement noise was not included for simplicity. The
closed-loop dynamics of the 1-DoF feedback system can be
stated as

Ẋ = AX + Br (9)

y = C X (10)

where

X =
[

X p

Xc

]
; A =

[
A p − Bp DcCp BpCc

−BcCp Ac

]
(11)

B =
[

Bp Dc

Bc

]
; C = [Cp 0]. (12)

Before obtaining the desired closed-loop form in (3) and (4),
we try to determine a transformed state-space representation
of the plant in the form of

Ẋ p = A p X p + Bpu + Qr̈pw (13)

y = Cp X p (14)

where u is the transformed input of the plant to be determined
and X p is the transformed state of the plant. Because the
second derivative of rpw appears in the first time derivative
of X p , one would intuitively choose the following expression
for the transformed state of the plant:

X p = X p + Rrpw + Qṙpw (15)

where R and Q are constant vectors to be determined as well.
Using (6) and (15), one can represent the error in the form of

rpw − y = (1 + Cp R)rpw + Cp Qṙpw − Cp X p. (16)

Hence, (14) is satisfied if and only if the following conditions
are satisfied:

Cp R = −1 (17)

Cp Q = 0. (18)

Denoting go := P(0) = −Cp A−1
p Bp as the plant dc gain,

which is assumed nonzero, by inspection, we may choose the
following expression for vector R to satisfy condition (17):

R = 1

go
A−1

p Bp. (19)

We also assume that the plant has no poles at the origin; hence,
the inverse matrix is well defined. Taking the time derivative
of (15) and using (5) and (19), we obtain the following
condition to satisfy (13):

(R − A p Q)ṙpw = Bp
(
u − u + g−1

o rpw
)
. (20)

This condition is satisfied if and only if the constant vectors
R − A p Q and Bp are parallel, implying

R − A p Q = λBp (21)

Fig. 3. 1-DoF feedback control system for the transformed plant.

where λ is a constant scalar to be determined. Using (18)
and (21), we can simultaneously solve for λ and vector Q,
obtaining

λ = −g−2
o Cp A−2

p Bp (22)

Q = (
g−1

o A−1
p − λI

)
A−1

p Bp. (23)

Having obtained vectors R and Q in terms of nominal plant
parameters, the transformed state of the plant is completely
determined from (15). Replacing (21) in (20) and equating
the time-varying scalar coefficients of the constant vector Bp

on both sides, we also obtain the input transformation as

u = u − g−1
o rpw + λṙpw. (24)

Lemma 1: Assume the reference signal rpw(t) and a strictly
proper plant described by (5) and (6) with no pole at the origin
and a nonzero dc gain of go. Then, with the ISTs described
by (15), (19), and (22)–(24) , the state-space representation
of the open-loop plant satisfies (13). In addition, the output
equation for the tracking error satisfies (14).

Proof: Having no poles at the origin ensures that matrix
A p is not singular and has an inverse. One can readily confirm
the validity of (13) and (14) by following the foregoing
synthesis procedure in a reverse direction.

IV. PROPOSED CONTROLLER

Comparing the transformed state equations of the plant
in (13) and (14) with those of the plant in (5) and (6) reveals
that a 1-DoF feedback system with the plant replaced by the
transformed plant and C1(s) as the controller should have
the same desired closed-loop system matrix A as in (11).
A schematic of this 1-DoF feedback system is shown in
Fig. 3, which is similar to the original feedback system
except for the exogenous signal r̈pw. Since the output of the
transformed plant is the tracking error, we reduce r to zero
and replace y and u by y and u, respectively, in (7) and (8)
to obtain the following controller dynamics:

Ẋc = Ac Xc + Bc(rpw − y) (25)

u = Cc Xc + Dc(rpw − y). (26)

Now, the closed-loop system dynamics satisfy the desired
state-space equations (3) and (4), where

X =
[

X p

Xc

]
, E =

[
Q
0

]
(27)
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Fig. 4. Proposed control system applied to the original plant. The exogenous
signals di (t) and do(t) represent the input and output disturbances applied to
the plant, respectively.

Fig. 5. Bode plots of the plant model in the illustrative example. The model
well matches the experimental data within a 3-dB bandwidth of 720 Hz.
Also included are Bode plots of the closed-loop transfer functions of the IST
control system. The transfer function from the measurement noise has a 3-dB
bandwidth of 19.44 Hz, whilst that of the reference signal is around 8 kHz.

and A and C are as defined in (11) and (12). Using (24), the
plant manipulated input is obtained as

u = u + v (28)

where v(t) = g−1
o rpw − λṙpw is a feedforward signal, and u

is obtained from the feedback controller, according to (25)
and (26). The proposed control system with respect to the
original plant has an output-feedback–feedforward configura-
tion as shown in Fig. 4.

Remark 2: Although the proposed method is based on a
state transformation, the final controller does not require
state measurement or estimation except for the plant output.
Furthermore, the internal stability of the feedback system is
not affected by the reference signal rpw. Moreover, to construct
the feedforward signal requires knowledge of only two scalar
parameters, i.e., the nonzero plant dc gain go and λ. These
two plant parameters can be obtained from a low frequency
approximation of plant transfer function without requiring
exact knowledge of state-space matrices of the plant (see
Appendix A).

V. ILLUSTRATIVE EXAMPLE

Consider a stable unity dc gain plant (go = 1) whose
frequency response is shown in Fig. 5. It is a model of an
analog feedback control system, where the original plant is
the x-axis of a lightly damped nanopositioner damped by

Fig. 6. (a) Scaled reference signal and tracking errors obtained by simulation
in the absence of measurement noise. (b) Tracking errors at steady state.

an Integral-Resonant-Controller (IRC) and controlled by an
integrator controller to have a unity dc gain, as detailed in
Appendix B-A. A fourth-order LTI approximation of the plant
can be represented as

P(s) = 1(
1 − s

p1

) (
1 − s

p2

) (
1 + 2ζ s

ωo
+ s2

ω2
o

) (29)

where p1 = −4587, p2 = −62830, ζ = 0.12, and ωo =
78540 rad/s. The objective is to track a triangular reference
with the fundamental frequency of 300 Hz, which is 42% of
the plant bandwidth while keeping the closed-loop bandwidth
less than 20 Hz to limit the projected noise at the plant output y
in Fig. 1. This is a challenging problem as in STA and ISM
methods, the frequency of the triangular reference is usually
selected less than 13% of the plant bandwidth for acceptable
tracking and transient performances [15]. We can tune the
coefficients of the double integral controller (1) as ki = 100,
and kii = 2000 to obtain a closed-loop system with stability
margins 54.53 dB and 77.5° and a bandwidth of 19.44 Hz.
To apply the proposed IST control method shown in Fig. 4,
we obtained λ ∼= −2.37 × 10−4 from (37). Also shown in
Fig. 5 are the resulting frequency responses of the closed-loop
transfer functions of the IST system from the reference signal
rpw and the noise source n to the plant output y, denoted by
Tr (s) and Tn(s), respectively. Clearly, the feedforward term
has considerably improved the bandwidth of Tr (s) without
affecting the small bandwidth of Tn(s).

The resulting tracking error along with the triangular refer-
ence is shown in Fig. 6(a). We have also included in Fig. 6(a)
the tracking errors of the same reference signal obtained by
the ISM method using the same controller C1(s), as detailed
in Fig. 7. Also included in Fig. 6(a), is the tracking error
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Fig. 7. Details of the ISM method for tracking of a triangular reference [9].

resulting from a direct application of the reference to the unity
dc gain open-loop plant. Clearly, the proposed IST method
achieves a considerable improvement in the transient tracking
performance compared with the other methods while keeping
a low closed-loop bandwidth for the projected noise. For ISM
and IST methods, Fig. 6(b) shows the profiles of the tracking
errors and their root-mean-square (rms) values in steady state,
where IST presents a better performance. Also included in
Fig. 6(b) is the open-loop tracking error of the lightly damped
nanopositioner described in Appendix B-A, where a constant
gain was used to provide a unity dc gain and the triangular
reference was directly applied to the undamped system.

Remark 3: In practice, such open-loop test is not desirable
as the dc gain of the undamped plant is not a constant and
varies with the amplitude of the excitation due to piezoelectric
hysteresis and creep. Also, the displacement output is prone
to slowly varying offset due to sensor drift.

Remark 4: Since the controller contains a double integrator,
the proposed IST approach can reject constant and ramp
disturbances. However, the ISM method cannot provide any
disturbance rejection, as shown by the simulation results in
Fig. 8. The transient time interval in the IST method during
disturbance rejection is closely related to the small closed-loop
bandwidth of the noise transfer function shown in Fig. 5. This
transient time can be reduced by increasing the gains of the
double integral controller, but at the expense of sacrificing
the noise rejection performance. A key factor in improved
performance of the IST method over ISM is the additional
feedforward term of −λṙpw. This factor is a piecewise constant
term, which exerts abrupt changes to the plant through the
feedforward path at the moments the rate of the reference
signal changes, discontinuously. In the ISM method, where the
feedforward term is only the continuous term of g−1

o rpw(t), the
feedback controller undertakes discontinuities to exert abrupt
changes on the plant and improve the tracking performance.
However, such abrupt discontinuities in the feedback system
can create poor transient (or even instability), as demonstrated
in Fig. 6(a). On the other hand, in the IST method, the burden
of providing discontinuities in the actuation signal has been
transferred into the feedforward path.

Fig. 9 shows the simulation results of the IST control
method with a high power measurement noise source. Clearly,
the IST method can considerably attenuate the effect of
measurement noise at the plant output and input without
compromising the tracking performance.

Fig. 8. Effect of application of constant output and input disturbances to the
plant on the tracking performances of the IST and ISM methods.

Fig. 9. Simulation results of the IST method in the presence of measurement
noise.

For comparison purposes, we also designed an HG con-
troller for the feedback system in Fig. 1. To do this, we used
the mixed-sensitivity synthesis method that minimizes the H∞
norm of the following cost function:

∥∥∥∥∥∥

W1(s)So(s)
W2(s)Ro(s)
W3(s)To(s)

∥∥∥∥∥∥∞
(30)

where So(s) = (1/(1 + C1(s)P(s))), Ro(s) =
(C1(s)/(1 + C1(s)P(s))), and To(s) =
(C1(s)P(s)/(1 + C1(s)P(s))) refer to sensitivity, control
sensitivity, and complementary sensitivity functions,
respectively. Having selected the weight functions as

W1(s) = s + 201100

2s + 201.1
, W2 = 5, W3 = s + 50270

0.001s + 100500
(31)

the H∞ optimization algorithm yields a sixth-order controller.
After performing model reduction, we obtained the following
HG controller:

C1(s) = 2.5 × 108(s + 4600)

s(s + 1.01 × 108)
. (32)

The HG controller provides a closed-loop bandwidth of
2400 Hz (more than three times of the plant bandwidth) and
stability margins of 9 dB and 77.6°. The magnitudes of the
frequency responses of the weighting functions, controller, and
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Fig. 10. Bode magnitude diagrams of the plant, weighting functions, HG
controller, and the closed-loop transfer function To(s) with HG controller.
The magnitude of the double integral controller used in the IST method is
also included for comparison.

Fig. 11. Simulation results of the HG control system in the presence of
measurement noise. The rms values of the tracking errors for both the HG
and IST methods are also included.

the complementary sensitivity function are shown in Fig. 10.
Fig. 11 shows the tracking performance of the HG controller
in the presence of measurement noise and the same triangular
reference as mentioned earlier, where the tracking error by the
IST method is also included for comparison. Clearly, the IST
method tracks the reference more accurately and the actual
plant output is almost free from noise fluctuations.

VI. EXPERIMENTAL RESULTS

In this section, we present the results of implementing IST
controllers on the x- axis and the y-axis of a two-input-
two-output plant described in Appendix B. The plant is a
diagonally dominant system and has a unity dc gain for each
axis as shown by the experimental frequency response in
Fig. 5. The first IST controller is applied to the x-axis to track
a triangular reference. The double-integrator controller and
reference signal for the x-axis are as described in Section V,
which are discretized at a sampling rate of 80 kHz for digital
implementation in dSPACE. The parameter λ was gradually
adjusted to −1.09 × 10−4 without affecting the stability, as
shown in Fig. 4. The resulting tracking performance and plant

Fig. 12. Experimental results of the IST control method for the x-axis.

input are shown in Fig. 12, where a subscript x has been
used for the variables to indicate they belong to the x-axis.
Similarly, subscripts y and z refer to variables associated with
the y-axis and the z-axis, respectively.

Remark 5: The experimental frequency response in Fig. 5
has been obtained by a small signal excitation. During a large
signal operation, nonlinearities, such as hysteresis and creep
in piezoelectric actuators, can change the actual bandwidth
of the plant. Note that these nonlinearities are ignored during
the simulation in Section V. Hence, the experimentally tuned
value of λ is different from the calculated value. This experi-
mental tuning capability also alleviates the burden of accurate
calculation of λ in the IST control method.

For the y-axis, the desired reference is a continuous staircase
signal, which is a piecewise linear trajectory. Hence, we can
also apply an IST control method for the y-axis. Since the
responses of the open-loop plant along the x-axis and the
y-axis are very similar, the selected IST parameter values
for the y-axis are identical to those of the x-axis except
for the reference and the feedforward signals. Fig. 13 shows
the experimental tracking performance of the ITS method in
control of the y-axis displacement for the continuous staircase
reference signal. In this experiment, we applied no actuation
to the x-axis to prevent exerting disturbances on the y-axis
from the cross-coupling (CC) effects. The tracking error for
the y-axis is considerably smaller than that of the x-axis in
Fig. 12 (rms values of 3.5 and 142 nm for the y and x ,
respectively). This can be justified by the fact that the slope
and amplitude of the triangular reference signal for the x-axis
are considerably higher than the slope and amplitude of each
step in the staircase reference for the y-axis.

A. Effect of Cross-Coupling

For raster scanning, the x-axis tracks a 300-Hz triangular
trajectory, while the y-axis has to follow a much slower
reference signal, as shown in Fig. 14. During raster scanning, it
is required to drive both axes simultaneously to cover a desired
rectangular area. There exist mechanical interactions between
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Fig. 13. Experimental results of the IST control method for the y-axis while
the x-axis is not actuated.

the displacements along the x- and y-directions, known as CC.
Although the level of CC in the nanopositioner is reasonably
low [18], it has a noticeable effect on the tracking error of the
y-axis (ey), as shown in Fig. 14. Also included in Fig. 14 is
the tracking error of the y-axis when the x-axis is not actuated.
Note that the effect of y-axis excitation on the tracking error
of the x-axis is insignificant, as shown in Fig. 15. The reason
is that the y-axis tracks a slowly varying reference, and hence,
its interaction on the x-axis is slowly varying too. This slowly
varying disturbance on the x-axis can be easily canceled
by the integral controllers included in the feedback system.
The disturbance on the y-axis mainly originates from the
x-axis motion, which is a rapidly varying signal. However,
the bandwidth of the control system is not large enough
to effectively cancel the rapidly varying disturbance on the
y-axis.

We apply an empirical approach to reduce the tracking error
for the y-axis without affecting the control bandwidth and
stability. Since the profile of the tracking error in Fig. 14 is
similar to the response of plant to a square wave actuation
signal, we augmented the IST control law (28) for the y-
axis by an additional feedforward signal αṙx , as shown in
Fig. 16. Here, rx refers to the triangular signal applied to the
x-axis and α is a constant to be tuned, empirically. With a
value of α = −3.8 × 10−5, the resulting tracking error of the
y-axis is also included in Fig. 14, while the x-axis is excited
to track the triangular reference. With this CC compensation
method, the rms value of tracking error is reduced to 11.6 nm,
which is five times smaller than the error rms value before the
compensation is applied.

Fig. 14. (a) Effect of exciting the x-axis by the fast triangular reference
on the tracking error of the slow axis (y-axis). (b) Triangular and staircase
reference signals for the x and y axes denoted by rx and ry , respectively.

Fig. 15. Large displacement of the slow axis (y-axis) has almost not effect
on the tracking error of the fast axis (x-axis), when the IST method is
simultaneously applied to both axes for generating a raster scan trajectory.

Fig. 16. Schematic of the IST control system for the y-axis with an additional
feedforward signal from the x-axis for CC reduction.

VII. AFM APPLICATION

The imaging performance of the nanopositioner with the
proposed control method is evaluated in this section. The
nanopositioner was placed under a Nanosurf Easy Scan2 AFM
as shown in Fig. 17. The AFM images were captured in
constant-force contact mode with an external high-bandwidth
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Fig. 17. Nanosurf AFM and the nanopositioner.

Fig. 18. 2-D and 3-D AFM images captured at 300-Hz raster line rate.

vertical feedback control loop as described in Appendix B.
A 190-kHz cantilever from BudgetSensors (Tap190Al-G)
which has a spring constant of 48 N/m was used to perform
the scans. A calibration grating (750-HD) from Advanced
Surface Microscopy, which has a nominal period of 750 nm
and height of 100 nm, was used as a sample to evaluate the
image performance of the system. Fig. 18 shows the resulting
raster-scanned 2-D and 3-D images obtained at 300 Hz line
rate from a 5 μm × 5 μm area of the sample. The image was
obtained in about 0.45 s and is of high quality without artifacts
caused by vibrations and insufficient tracking bandwidth. The
image quality is further confirmed by comparison with the
constant-force AFM image of the same sample as reported
in [19], where the maximum lateral speed is reduced almost
twice by an open-loop sinusoidal scan at 100 Hz.

VIII. CONCLUSION

For a 1-DoF stable output feedback control system, we
derived IST mappings that impose a desirable closed-loop
tracking performance with a piecewise constant reference sig-
nal. The resulting control system (IST) does not require state
feedback but requires a feedforward signal, which is generated
from the reference signal and its time derivative. Knowledge
of low frequency approximation of the plant is enough to
calculate the feedforward coefficients. These parameters can
also be experimentally tuned without affecting the stability.
In contrast to STA and ISM methods for tracking of triangular
references, an increase in the reference frequency does not
render the loop unstable in the IST method.

Simulation results reveal significant improvement of the
tracking performance compared with that of the ISM method.
In the presence of measurement noise, we also compared the
performance of IST with that of an HG controller. In contrast
to 120-fold increase of control bandwidth in the HG system,
the rms value of the tracking error for the actual plant output
in IST system is still eight times smaller than that of the HG
system.

Effectiveness of the IST method was also examined on a
custom-made 3-D nanopositioner for atomic force microscopy,
where the IST method was also applied to the slow axis
(y) to accurately follow a continuous staircase reference
signal. Because of the small closed-loop bandwidth of the
IST controllers, the y-axis suffers from a relatively large error
induced by the CC from the fast axis (x). We were able to
obtain a fivefold improvement in the y-axis error by including
an additional feedforward signal for the y-axis proportional
to the time derivative of the x-axis reference signal. This
proportionality constant is empirically tuned without affecting
the stability and bandwidth of the closed-loop system. We also
demonstrated how the application of the proposed controllers
on the nanopositioner can generate artifact free raster scan
AFM images in a constant-force contact mode condition at a
line rate of 300 Hz.

APPENDIX A
FEEDFORWARD COEFFICIENTS

In this section, we show that coefficients go and λ in the
feedforward signal can be calculated from a low frequency
approximation of the plant transfer function. Assume that the
plant transfer function is as

P(s) = g0
1 + β1s + β2s2 + · · · + βn−1sn−1

1 + α1s + α2s2 + · · · + αnsn
. (33)

Since the plant has no poles at the origin P(s) is differentiable
at s = 0 and the first two terms of Taylor series expansion
of (33) around the origin results in

P(s) = go + go(β1 − α1)s +
∞∑

k=2

1

k!
dk P(s)

dsk

∣∣∣∣∣
s=0

sk . (34)

An alternative way to represent the plant transfer function in
terms of state-space matrices is as P(s) = Cp(s I − A p)

−1 Bp.
Using this expression, the Taylor series expansion of P(s)
around s = 0 (specifically the first two terms) is as

P(s) = −Cp A−1
p Bp − Cp A−2

p Bps −
∞∑

k=2

Cp A−k−1
p Bpsk .

(35)

To obtain (35), the following Taylor expansion has been used
around the origin:

(s I − A p)
−1 = −A−1

p

(
I + A−1

p s +
∞∑

k=2

A−k
p sk

)
. (36)

Since the Taylor series coefficients of P(s) are unique, the
coefficients of s in the right-hand sides of (34) and (35)
should be identical, i.e., −Cp A−2

p Bp = go(β1 − α1). Using
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Fig. 19. (a) Circuit diagram of the analog controllers used for the y-axis of
the nanopositioner. (b) Equivalent feedback system making a unity dc gain
plant for the y-axis.

this equality and (22), we obtain an alternative expression for
λ as

λ = g−1
o (β1 − α1). (37)

Note that at sufficiently small frequencies, the numerator and
denominator polynomials of the plant transfer function can be
approximated by the first-order polynomials as

P(s) ≈ go
1 + β1s

1 + α1s
. (38)

Hence, both go and λ can be approximated by the coefficients
in (38), which is a low frequency approximation of the plant.

APPENDIX B
EXPERIMENTAL PLANT

This section describes the details of internal controllers that
provide unity dc gain plants for each axis of the nanopositioner
detailed in [18].

A. Lateral Axes

Fig. 19(a) shows the circuit diagram of the analog controller
used for the y-axis, where vay is the output voltage applied
to the piezodrive amplifier of the y-axis, ym is the voltage
from the capacitive sensor of the y-axis, and u is an auxiliary
input (plant input in Fig. 1). Assuming ideal op-amps, a high
input impedance for the piezodrive amplifier, and the following
equalities:

r1

r2

∼= r3

r4
; r5 ∼= r6 (39)

we can describe the feedback system as shown in Fig. 19(b),
where

Ki = 1

2ri Ci
; Kirc = R2

2R1
; τ = R2C2. (40)

Fig. 20. Frequency responses of the open-loop y-axis (G y(s)), damped
system [transfer function from input w in Fig. 19 to output ym (Tymw)], and
the unity dc gain plant [Tym uy (s) or P(s) for the y-axis].

Fig. 21. Schematic of the z-axis control system.

The open-loop nanopositioner along the y-axis is a lightly
damped system and has a negative dc gain as shown in Fig. 20.
The low-pass-filter in the inner loop is used to damp the
resonance and is equivalent to an Integral-Resonant-Controller
(IRC) [20], [21]. The two resistors R1 and R2 were realized by
a potentiometer to provide versatility of tuning the low-pass-
filter coefficients, simultaneously. Having selected the element
values reported in Fig. 19(a), the IRC controller reduces the
dominant resonance peak at 12 kHz more than 16 dB as shown
by the transfer function Tymw of the inner loop in Fig. 20.
To satisfy the first equality in (39), which is required for the
subtraction block in Fig 19(b), r3 and r4 were realized by a
potentiometer, as well. Another potentiometer was also used
for ri to tune the gain of the integrator. The integral controller
provides a robust unity dc gain for the plant in Fig. 1 at the
expense of a further reduction in the bandwidth, as shown
by the transfer function of the plant (P(s)) in Fig. 20. The
stability margins for the inner loop and the integral control
loop are (6.9 dB,−82°) and (18.2 dB, 84°), respectively. The
details of the unity dc gain plant for the x-axis are almost
similar to those of the y-axis.
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Fig. 22. Experimental frequency responses of the damped z-axis (Tduz (s))
and the overall closed-loop system with the PI controller (Tdrz (s)).

Fig. 23. (a) Circuit diagram of the analog PI controller for the z-axis.
(b) Schematic of the equivalent PI control system.

B. Vertical Axis

The control system for the vertical axis aims to regulate the
probe deflection in an atomic force microscope (AFM) at a
constant setpoint to perform imaging in a constant force mode.
The open-loop response of the nanopositioner along the z-axis
has resonant modes at 20, 60, and 83 kHz. The resonant mode
at 20 kHz is mechanically damped by a dual mounted structure
and the remaining modes are damped by an IRC controller as
shown in Fig. 21 [19]. The experimental frequency response
of the damped z-axis from the auxiliary control input uz to
the probe deflection signal d (Tduz (s)) is shown in Fig. 22.
The schematic in Fig. 23 represents the analog PI controller
used to regulate the probe deflection and the equivalent control
system. Using the element values reported in Fig. 23(a), the

proportional and integral gains are

k pz = rz2

2rz1
= 0.93 (41)

kiz = 1

2rz3Cz
= 2.056 × 105

(
1

sec

)
. (42)

Resistances rz1, rz2, and rz3 were realized by potentiometers
to readily adjust the proportional and integral gains to desired
values. The PI controller provides stability margins 6.3 dB and
62°. The frequency response of the overall closed-loop control
system for the z-axis is also included in Fig. 23, indicating a
bandwidth around 50 kHz.
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