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Lyapunov Estimator for High-Speed Demodulation
in Dynamic Mode Atomic Force Microscopy

Michael R. P. Ragazzon, Michael G. Ruppert, David M. Harcombe,
Andrew J. Fleming, and Jan Tommy Gravdahl

Abstract— In dynamic mode atomic force microscopy (AFM),
the imaging bandwidth is governed by the slowest component in
the open-loop chain consisting of the vertical actuator, cantilever,
and demodulator. While the common demodulation method is
to use a lock-in amplifier (LIA), its performance is ultimately
bounded by the bandwidth of the postmixing low-pass filters.
This brief proposes an amplitude and phase estimation method
based on a strictly positive real Lyapunov design approach. The
estimator is designed to be of low complexity while allowing
for high bandwidth. In addition, suitable gains for high per-
formance are suggested such that no tuning is necessary. The
Lyapunov estimator is experimentally implemented for amplitude
demodulation and shown to surpass the LIA in terms of tracking
bandwidth and noise performance. High-speed AFM images are
presented to corroborate the results.

Index Terms— Amplitude estimation, atomic force
microscopy (AFM), Kalman filters, Lyapunov methods,
nanopositioning, parameter estimation, phase estimation.

I. INTRODUCTION

ATOMIC FORCE MICROSCOPY (AFM) has become
a key enabling technology for high-precision study of

materials and biological processes over the last few decades
[1]. The dynamic modes of AFM [2] are particularly well
suited for studying soft biological materials due to the small
friction and interaction forces involved [3], [4]. In dynamic
mode AFM, a cantilever is forced to oscillate over the sample
surface. As the cantilever approaches the surface, the ampli-
tude and phase of the oscillation become a function of the
sample topography. By demodulating the amplitude or phase
and using them in a feedback loop with the vertical positioner,
the cantilever is made to follow the surface as shown in Fig. 1.
In order to obtain the sample topography, the cantilever
is commonly scanned in a raster pattern along the lateral
directions.

The imaging bandwidth is limited by the slowest component
in the control loop consisting of the vertical actuator, can-
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Fig. 1. Amplitude modulated operating mode in AFM.

tilever, and demodulator [5]. The vertical actuator is commonly
constructed from a piezoelectric element and the bandwidth is
highly dependent on its mechanical design [6]. The cantilever
bandwidth on the other hand is limited by its resonance
frequency f0 and quality (Q) factor by f0/(2Q) [5]. Thus,
a cantilever with high resonance frequency and preferably low
Q factor is typically chosen for high-speed AFM applications.

Finally, a high-bandwidth demodulator is necessary to com-
plete the control loop, which is the primary focus of this brief.
The most common demodulator in the AFM applications is
the lock-in amplifier (LIA), which is a type of synchronous
demodulator, where the carrier reference signal is known.
In their simplest form, these amplifiers consist of a multiplier
followed by a low-pass filter (LPF) [7]. Although LIAs can
provide a high-noise rejection, the performance is ultimately
limited by the bandwidth of the postmixing LPFs.

Several high-bandwidth amplitude demodulation techniques
have been proposed for increasing the overall imaging band-
width. The high-speed AFM results presented in [8] introduce
the peak hold method, which converges in half an oscil-
lation cycle. However, this method is prone to noise and
disturbances from unwanted harmonics. Recent developments
include the low-latency coherent demodulator [9], the high-
bandwidth LIA [10], and Kalman filter [11], [12]. The latter
has also been extended for multiharmonic imaging [13], [14].
The performance of many of these methods and others was
numerically evaluated in [15], where the Lyapunov-based
amplitude estimator was introduced in brief. This adaptive
law based on a strictly positive real (SPR) Lyapunov design
approach [16]—or Lyapunov estimator—was shown to strike
a good balance between performance and complexity.

Although the Kalman filter results were shown to be effec-
tive in terms of performance, the complexity of implementing
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a complete Kalman filter in a high-speed setting can be
challenging. In fact, the computational complexity of the
update law can ultimately become a limiting factor in terms of
allowable bandwidth. In addition, with simpler update laws the
sampling speed can be increased, which will reduce the overall
noise floor of the system [17]. Thus, a simpler estimator
was sought with similar performance characteristics, which
resulted in the Lyapunov estimator. This estimator can be
seen as a simplification of the Kalman filter in terms of the
update laws and computational complexity, without sacrificing
significant performance.

In this brief, the Lyapunov estimator is described in detail,
including convergence properties, implementation and tuning
details, and experimental results.

The remainder of the brief proceeds as follows.
In Section II, the amplitude estimation problem is formulated.
Background material for the general Lyapunov estimator
is provided in Section III, and stability properties and
convergence rate are established. In Section IV, the Lyapunov
amplitude estimator is presented. Section V provides
procedures for tuning the estimator. Experimental results are
discussed in Section VI. Finally, the conclusion is drawn in
Section VII.

Notation: Time-domain signals are denoted in lower case,
e.g., y(t), while the frequency-domain filters are denoted in
upper-case as in W (s). The time-dependence of a signal is
often not explicitly stated for convenience. Furthermore, filters
and signals are sometimes mixed, e.g., the expression z(t) =
W (s)y(t) should be understood as z(t) = L−1[W (s)L(y(t))],
where L is the Laplace transformation. Vector signals are
denoted in bold such as x(t).

II. PROBLEM FORMULATION

The problem can be formulated as estimating the ampli-
tude a(t) and phase φ(t) using only past and present mea-
surements of the signal

y(t) = a(t) sin(ω0t + φ(t)) + v(t) (1)

where ω0 is the known angular frequency and v(t) represents
a zero-mean noise process. Optionally, the signal is measured
through a device or filtered through a transfer function W (s)
such that

z = W (s)y (2)

where z is the input signal exposed to the estimator. This
transfer function can either represent a part of the plant, such
as a measuring device, or alternatively, be implemented as a
signal processing filter as part of the estimator, such as for
noise attenuation. The filter can be assumed unitary W (s) = 1
if not desired.

III. ESTIMATOR BACKGROUND

In this section, background material for the Lyapunov
estimator is presented. The problem needs to be transformed
into a model suitable for application of the general Lyapunov
parameter estimator. Some insight into the stability proper-
ties of the estimator is provided. More specifically, for the

problem at hand, it is shown that the estimator guarantees
convergence of the parameter estimates in exponential time
due to the persistently exciting (PE) property of the signal
vector. In addition, a conservative limit on the convergence
speed of the method is found for the given signal vector. This
allows easy tuning of the gain γ later.

A. Linear Parametric Model

The sinusoidal signal (1) can be written in terms of its in-
phase and quadrature component by applying trigonometric
identities such that

y = a sin(ω0 t + φ) (3)

= a cos(φ) sin(ω0 t) + a sin(φ) cos(ω0 t) (4)

= cT x (5)

where noise has been disregarded, x = [x1, x2]T , and

c = [sin(ω0t), cos(ω0t)]T . (6)

The system is now in a linear-in-the-parameters form, which
permits the direct application of estimation methods [16].
By comparing (4) and (5), the amplitude and phase can be
found from

a = ‖x‖2 (7)

φ = atan2(x2, x1) (8)

where atan2(·) is the four-quadrant tangent inverse function.

B. SPR Property of W (s)

A necessary condition for the stability of the estimator
requires the transfer function W (s) to be SPR. Positive real-
ness of a transfer function is related to the passivity of a
system [16], [18], [19]. The following definitions are restated
here for convenience.

Definition 1: A rational proper transfer function W (s) is
positive real (PR) if the following hold.

1) W (s) is real for real s.
2) Re[G(s)] ≥ 0 for all Re[s] > 0.
Definition 2: Assume that W (s) is not identically zero for

all s. Then W (s) is called SPR if W (s − ε) is PR for some
ε > 0.

Remark 1: If the desired W (s) is not SPR, it can be
modified by introducing a transfer function L(s) such that the
new filter W∗(s) = W (s)L(s) is SPR and replaces W (s). If no
proper L(s) can be found, the signals y(t) and c(t) themselves
can be filtered to allow the estimator to be realizable. This is
further discussed in [16] and [20].

C. General Lyapunov Estimator

The estimator is based on a Lyapunov approach from [16]
for a wide class of systems of the linear parametric form such
as in (5) with unknown parameters x. The Lyapunov estimator
allows the estimated parameters x̂ to be found from the input
signal z and the known signal vector c. The estimator can be
written as

˙̂x = γ c (z − ẑ) (9)

ẑ = W (s)cT x̂ (10)
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where γ is a constant gain parameter and ẑ is the estimated
input signal. In general, an additional normalization term is
applied to (9) in the case the signal vector c is unbounded,
this is not necessary in the case of (6). Additional details are
found in [16].

D. Stability

The update law (9) applies for a wide range of problems
and guarantees boundedness of the error ε = z − ẑ and the
estimate x̂. The stability properties of the estimator can be
shown using the Lyapunov-like function

V (x̃, e) = eT Pce
2

+ x̃T γ −1x̃
2

(11)

where Pc = PT
c > 0, x̃ = x − x̂, and e is the state

vector of the state-space representation of the error signal,
which can be found to be ε = W (s)cT x̃. The SPR prop-
erty of W (s) is exploited in the derivation of the update
law (9) canceling the indefinite terms of V̇ such that it
becomes negative semidefinite. This immediately guarantees
boundedness—that is L∞-stability of ε, x̂, and L2-stability
of ε, ˙̂x [16, Th. 4.3.1]. However, this does not yet guarantee
convergence of the parameters, which is essential for the
amplitude estimation problem. An additional PE property of
the signal c is necessary.

E. Persistency of Excitation

Although the parameter estimates are guaranteed to be
bounded, an additional PE [16] property of the signal vector c
is required for convergence of the parameters. In the following,
it is shown that c given in (6) is PE.

The signal is PE if there exist constants T, α0, α1 > 0 such
that

α1I ≥ S � 1

T

∫ t+T

t
c(τ )cT (τ )dτ ≥ α0I ∀t ≥ 0. (12)

Evaluating S with c from (6) gives (13), as shown at the bottom
of this page, and choosing

T = 1

2
f −1
0 = πω−1

0 (14)

results in

S =
⎡

⎢

⎣

1

2
0

0
1

2

⎤

⎥

⎦
= 1

2
I ∀t ≥ 0 (15)

with a level of excitation α0 = (1/2). Thus, c from (6) is
PE, which guarantees exponential convergence of x̂ → x
[16, Cor. 4.3.1].

F. Convergence Rate and Gain γ

Given the PE property of the signal vector c, the parameter
estimates are guaranteed to converge in exponential time.
In fact, the rate of convergence can be found in terms of
the gain γ . An expression for γ can then be found, which
optimizes the rate of convergence as shown in the following.

For the ease of analysis, assume here that W (s) = 1, which
makes the update law (9)-(10) equivalent to the update law of
the gradient method [16], which can be considered a special
case of the Lyapunov estimator. Then, the convergence of the
parameter estimate error x̃(t) is determined by [16]

x̃T x̃ ≤ kn x̃T
0 x̃0 ∀t ≥ nT, n = 0, 1, . . . (16)

for x̃0 = x̃(0) and 0 < k < 1 given by

k = 1 − 2α0T γ

2 + β4T 2γ 2 (17)

where β = supt |c(t)| = 1 for c in (6). Thus, the convergence
rate is given by k such that a smaller value gives faster
convergence.

The gain γ minimizing k in (17) can now be found.
Inserting for T from (14) and α0 found from (15) results in

arg min
γ

k = 2
√

2 f0. (18)

This value of γ serves as a suitable initial choice. However,
since the convergence rate in (16) represents a conservative
limit due to the inherent conservative nature of the Lyapunov
analysis, a faster solution may be found through simulations.

IV. LYAPUNOV AMPLITUDE AND PHASE ESTIMATOR

A. Update Law

In summary, the update law for the amplitude estimator is
given by the Lyapunov estimator (9) and (10) applied to the
system (5) and (6). Finally, the estimated amplitude â and
phase ̂φ can be found by applying the parameter estimate x̂
into (7) and (8).

Since x̂ converges in exponential time, it is clear that
(̂a, ̂φ) → (a, φ) in exponential time considering (7) and (8).
Some implementations of atan2 may not be defined for x̂ = 0.
However, because of the exponential convergence properties
the estimator cannot stay identically in x̂ = 0 unless y ≡ 0,
thus the issue is resolved in finite time for a well-posed
problem. A block diagram of the update law is shown in Fig. 2.

B. Relationship to the Kalman Filter

Under certain conditions, the Kalman filter for amplitude
estimation [12] is equivalent to the Lyapunov estimator, as will
be demonstrated in the following. First, it is shown that the
two methods are equivalent when the covariance matrix of the
Kalman filter, P, is constant. Then, certain conditions under

S = 1

4 Tω0

[

2ω0T − sin(2ω0(T + t)) + sin(2ω0t) − cos(2ω0(T + t)) + cos(2ω0t)
− cos(2ω0(T + t)) + cos(2ω0t) 2ω0T + sin(2ω0(T + t)) − sin(2ω0t)

]

(13)
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Fig. 2. Block diagram of the estimator. The blocks “·” and “×” represent
vector dot product and matrix multiplication, respectively.

which the covariance matrix that approaches a constant is
given, thus showing equivalency.

With a system matrix A = 0 and no input signal, B = 0,
the continuous-time Kalman filter can be written as

˙̂x = PcR−1 (z − cT x̂) (19)

Ṗ = Q − PcR−1cT P (20)

where the process covariance Q and measurement covari-
ance R are assumed to be on the form Q = qI, R = rI for
some positive constants q, r .

Note that for Ṗ = 0, P = pI, the Kalman filter (19) is
equivalent to the Lyapunov estimator (9)–(10) with W (s) = 1
and γ = pr−1. Thus, in cases where P is constant, the Kalman
filter can be reduced to the Lyapunov estimator with mathe-
matical equivalency. In the following, solutions to the Kalman
equations with constant P are found and investigated.

Consider a particular solution to (20) of the form

P =
[

a sin(2ω0t + φ) + b a cos(2ω0t + φ)
a cos(2ω0t + φ) −a sin(2ω0t + φ) + b

]

(21)

for some constants a, b, and φ. The real, positive solution to
these constants in terms of ω0, r, and q are given by

a = q

2ω0
(22)

b =
√

q

√

q + 4ω0

√

r2ω2
0 + qr + 4rω2

0

2ω0
(23)

φ = 2atan

⎛

⎜

⎝

√

√

√

√

q − 4ω0

√

r2ω2
0 + qr + 4rω2

0

q − 8rω2
0

⎞

⎟

⎠
. (24)

In some cases, the covariance matrix P approaches a constant.
Consider

lim
ω0→∞ a/b = 0. (25)

which demonstrates that with increasing oscillation frequency
the amplitude a in the covariance matrix is dominated by
the constant offset term b and can be approximated by P =
bI. In this case, the Kalman filter can be simplified to the
Lyapunov estimator with W (s) = 1 and

γ = b/r. (26)

In fact, (26) can be used to tune the Lyapunov estimator if
the measurement and process noise covariances are known.
In addition

lim
q→0

a/b = 0 (27)

lim
r→∞ a/b = 0. (28)

Thus, the Kalman filter behaves identically to the Lyapunov
estimator in any of the cases where the following holds.

1) The oscillation frequency ω0 is large.
2) The process noise covariance q is small.
3) The measurement noise covariance r is large.

In these cases, by replacing the Kalman filter with the
Lyapunov estimator, the estimator can be run at higher update
speeds possibly allowing for a higher bandwidth and improved
noise response, due to the simpler implementation of the latter.

V. TUNING AND SIMULATIONS

A. Simulation Results

Simulations for both amplitude and phase demodulation
are plotted in Fig. 3 for the different values of γ , measure-
ment noise, and W (s), implemented at a sampling rate of
4 MHz. In general, it can be seen that for higher values
of γ the estimator converges faster but at some point it
starts to overshoot. When noise is added in Fig. 3(b) it can
be seen that high values of γ are more prone to noise.
However, by applying an LPF for W (s) on the measured signal
y(t), some of the high-frequency noise is attenuated even at
high γ values. The performance of the phase demodulation
closely follows that of the amplitude demodulation, which
is expected as they are both immediate calculations from
the same estimated in-phase and quadrature components (̂x).
Thus, the dynamics of the two demodulation modes should be
equivalent.

B. Choosing the Transfer Function W (s)

The SPR transfer function W (s) can either represent any
device or system between the sinusoidal signal y(t) as in (1)
and the estimator, and/or be designed as a postmeasurement
filter for reducing high-frequency noise. Otherwise, it can be
assumed that the measurement z(t) closely resembles that of
the signal y(t) by setting W (s) = 1. If instead, an LPF is used,
the cutoff frequency should be set high enough such that the
oscillation frequency of the sinusoid in y(t) is not attenuated.

C. Choosing the Gain γ

With an initial estimate of γ given by (18), further adjust-
ments can be made by investigating the transient effect in the
step response simulations in Fig. 3. It can be seen that for the
highest value of the gain, γ = 24 f0 the transient overshoots
considerably, while at γ = 9 f0 (red) it is seemingly close to
critically damped. For lower values of γ the convergence rate
is noticeably slower. The simulations thus suggest a value of

γ = 9 f0 (29)
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Fig. 3. Step response simulation of the Lyapunov estimator for (a)–(c) amplitude demodulation and (d) phase demodulation, with carrier frequency
f0 = 50 k H z. Measurement noise with rms = 4 nm added to (b) and (c) demonstrating difference in W (s) filters, where WLP(s) = 1/(0.8ω−1

0 s + 1).
Real amplitude/phase ( ), input signal ( ), demodulated amplitude â, or phase ̂φ with γ = 0.6 f0 ( ), γ = 2 f0 ( ), γ = 9 f0 ( ),
and γ = 24 f0 ( ).

which, as expected, is slightly higher than the initial conserv-
ative estimate from (18).

Note that this evaluation is based on finding a gain primar-
ily for achieving the highest possible estimation bandwidth.
In some cases, this may result in a noisy amplitude estimate.
As demonstrated in the simulation results, by reducing the
value of γ the estimator essentially acts as an LPF on the
noise, improving the noise rejection.

D. DC-Offset

In dynamic mode AFM, there is typically a dc offset in
the measured cantilever deflection. A constant offset in the
input signal z can affect the output response of the estimator,
as shown in Fig. 4. In general, this problem is most prominent
at higher demodulator bandwidths. One solution for handling
this is to use ac coupling on the experimental measurement
equipment, or equivalently adding a high-pass filter at the
measured input signal. Another solution is to augment the
Lyapunov estimator to simultaneously estimate the offset. This
can be performed by adding a third state in x̂ representing
estimated offset, and adding a third constant element to
c—typically 1. Finally, γ is modified to accept a different gain
for the offset than for the amplitude/phase estimates, replacing
it with the diagonal matrix

� = diag(γ, γ, γdc) (30)

where γdc is the dc offset update gain, and (9) now assumes
matrix multiplication. Since the offset is by definition slowly-
varying, the dc gain can be set relatively low to avoid affecting
the performance of the demodulated signals. This implemen-
tation is demonstrated in Fig. 4 (purple line). It is seen
that the oscillations in tracking response introduced with the
dc step is reduced once the dc estimate converges. Conversely,
the amplitude estimate of the original Lyapunov estimator
continues with standing oscillations after the dc offset is
introduced.

VI. EXPERIMENTAL RESULTS

A. Implementation Details

The Lyapunov estimator was implemented on a National
Instruments USB-7855R with Kintex-7 70T FPGA using

Fig. 4. Lyapunov estimator simulated with a step in dc-offset at the input
signal, with carrier frequency f0 = 50 kHz, gain γ = 9 f0, and dc-gain
γdc = 20 k for the augmented Lyapunov estimator with dc-estimation.

dedicated DSP blocks, achieving a sample frequency
of 300 kHz. The performance of the implemented Lyapunov
estimator was experimentally assessed and compared with
a state-of-the-art LIA (Zürich Instruments HF2LI), which
provides flexible postmixing LPF settings.

B. Amplitude Tracking Bandwidth

To determine the amplitude tracking bandwidth, a laboratory
function generator (Agilent 33521A) is employed, providing a
carrier frequency of 50-kHz-amplitude modulated by a swept
sine signal. This FM–AM concept directly reveals the LPF
characteristic of the Lyapunov estimator and of the postmixing
filters of the LIA and allows for a direct extraction of the
−3-dB tracking bandwidth.

The tracking bandwidth frequency responses of a slow
LIA with LPF cutoff frequency fc = 500 Hz, fast LIA with
fc = 50 kHz, slow Lyapunov estimator with γ = 20 k,
and fast Lyapunov estimator with γ = 700 k are shown
in Fig. 5(a). The slow settings achieve a −3-dB bandwidth of
around 500 Hz for both the LIA and Lyapunov estimator, while
the fast settings achieve a −3-dB bandwidth of 48.2 kHz and
50.0 kHz for the LIA and Lyapunov estimator, respectively.

Note that the fast LIA shows significant spikes at
2 f0 and 4 f0 due to insufficient filtering of the mixing products.
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Fig. 5. Amplitude tracking experiment using the LIA and Lyapunov estimator
with a carrier frequency of 50 kHz. (a) Frequency response at different
bandwidth settings. (b) Time-domain tracking of a square-modulated sine
wave.

To further highlight this point, time-domain tracking experi-
ments of a square-modulated sine wave are shown in Fig. 5(b).
Using the fast bandwidth setting for both demodulators,
the LIA amplitude estimate is dominated by 2 f0 oscillations,
making this demodulator impractical at these tracking band-
widths.

The results emphasize the fact that the Lyapunov estimator
is superior to the LIA, when carrier frequencies are small
compared with the necessary tracking bandwidth. While the
tracking bandwidth of the LIA can be increased by choosing
a large LPF cutoff frequency, the amplitude estimate becomes
increasingly distorted by the mixing products.

The −3 dB tracking bandwidth of the Lyapunov estimator
is plotted against the gain γ in Fig. 6, and compared with
the simulated values. The bandwidth increases approximately
linearly with increasing γ until the bandwidth approaches the
cantilever oscillation frequency f0. There is a constant gain
discrepancy between simulations and experiments, and this can
possibly be attributed to internal gains in the experimental
setup not accounted for.

C. Noise Analysis

In this experiment, the rms noise of the amplitude esti-
mate of the Lyapunov estimator and LIA is evaluated as a
function of tracking bandwidth. For this purpose, the four
channel acquisition front-end of a micro system analyzer

Fig. 6. Tracking response of Lyapunov estimator for increasing gain γ .

Fig. 7. Measured TIN of amplitude estimate from LIA and Lyapunov
estimator, with curve fit, as a function of tracking bandwidth.

(Polytec MSA-050-3D) is used to capture time-domain data
passed through a high-order antialiasing LPF with cutoff
frequency of 1.2 MHz and sampled at fs = 2.56 MHz for
T = 13.11 s. We use the total integrated noise (TIN) [21]
as the performance metric, which is obtained by integrat-
ing the noise density estimate from dc to fs/2 using
Welch’s method [22] without averaging nor overlap.

The TIN of the amplitude estimate obtained from the
Lyapunov estimator is compared with the demodulated ampli-
tude of the LIA as a function of the tracking bandwidth
in Fig. 7. The rms noise of the Lyapunov estimator esti-
mate only increases slightly from 1.21 mV for the smallest
bandwidth of 500 Hz to 5.6 mV for the largest bandwidth
of 50 kHz. In contrast, the rms noise of the demodulated
amplitude using an LIA, increases exponentially when the LPF
cutoff frequency is increased above, approximately, 10 kHz.
While the LIA is better at very low bandwidths, above
7 kHz the Lyapunov estimator shows significantly lower noise.
In other words, for the same TIN of 5.6 mV, the LIA only
achieves a 10 kHz bandwidth compared with almost 50 kHz
achieved by the Lyapunov estimator. Thus, during high-speed
experiments, the Lyapunov estimator could either track at the
same bandwidth for a lower TIN compared with the LIA—or
at higher bandwidths for the same total integrated noise.

The improved LIA noise response at low bandwidths can
be attributed to its higher order low-pass filtering. In fact,
the Lyapunov estimator can be seen to act as a first-order
LPF in the 1–10 kHz range based on its 20-dB/decade roll-off
in Fig. 5(a), while the commercial LIA employs a fourth order
Butterworth filter. As shown in the Appendix, the TIN of the
LIA is expected to be ∼0.56 times the TIN of the Lyapunov
estimator purely due to the different filter orders, while the
experimental TIN ratio was measured to be 0.73. This may
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Fig. 8. AFM scanning results. (A) LIA with fc = 100 Hz, (B) LIA with
fc = 200 Hz, (C) LIA with fc = 400 Hz, and (D) Lyapunov estimator with
γ = 60 × 103, providing a tracking bandwidth of ∼1.6 kHz. (a) 3-D Image.
(b) 2-D Image. (c) Cross section.

suggest that the Lyapunov estimator would outperform the
LIA at the same filter order. However, other sources for the
difference should be considered, including noise not being
completely white, or measurement noise at higher frequencies
not being filtered out. In addition, the LIA has a fixed sampling
rate about three orders of magnitude faster than the Lyapunov
estimator, and the two estimators use different signal input
ranges. This will in total result in some differences partly
attributable to the experimental setup.

D. High-Speed AFM Imaging

Finally, the Lyapunov estimator and LIA are used in a
high-speed constant-height tapping-mode AFM experiment
for demonstrating the effect of increased demodulator band-
width. The common z-axis actuator bandwidth limitation is
circumvented by reducing the z-axis controller bandwidth
to the point, where the sample features during scanning
entirely appear in the amplitude error image, thus reducing the
bandwidth-limiting components of the AFM z-axis feedback
loop to the cantilever and demodulator exclusively.

In order to render the demodulator the bottleneck of the
open-loop AFM chain, a fast cantilever is necessary. Due
to the sample frequency limitation of the LabVIEW FPGA,
we employ a cantilever with the fundamental resonance fre-
quency of f0 ≈ 50 kHz. The piezoelectric integrated actuation
of the cantilever allows for model-based quality (Q) factor
control to reduce the Q factor to Q0 = 8 [23], resulting
in an experimentally verified tracking bandwidth of 3.3 kHz
(not shown), which adequately matches the first-order approx-
imation f0/(2Q0).

The AFM images of a calibration grating (NT-MDT TGZ3)
with periodic features of heights h = 520 ± 3 nm were

obtained on an NT-MDT NTEGRA AFM. The sample was
scanned at a speed of 627.45 µm/s in a 10 × 10 µm area at a
scanner rate of 31.37 Hz and resolution of 256 × 256 pixels,
while recording the amplitude estimates of the LIA and the
Lyapunov estimator in parallel. As only the forward trajectory
is recorded, the entire image is acquired in 8.16 s.

The γ of the Lyapunov estimator could have been set
according to (29) for the highest demodulator bandwidth.
However, this initial value allows the Lyapunov estimator to
track the amplitude at a much higher bandwidth than that of
the cantilever tracking bandwidth. Instead, γ was reduced in
order to improve the overall noise response of the system. The
resulting gain was set to γ = 1.2 f0, which results in a −3 dB
bandwidth at approximately 1.6 kHz.

The high-speed constant-height imaging results are pre-
sented in Fig. 8. Every experiment is performed at the same
imaging speed, and each row represents increasing demod-
ulator bandwidths. By setting a larger demodulator band-
width, the sharp sample features are more accurately tracked
as demonstrated by the consecutive rows, with the highest
bandwidth here performed by the Lyapunov estimator in the
last row.

VII. CONCLUSION

In this brief, an amplitude and phase estimator designed for
use in high-speed dynamic mode AFM has been introduced.
The Lyapunov estimator is designed for high bandwidth,
yet low complexity for ease of implementation. It requires
no tuning by using the suggested gain for high-bandwidth
performance in (29). However, the noise response can be
improved by reducing the gain, such as by matching the
resulting demodulator bandwidth to the bandwidth of the
cantilever or z-axis actuator. It has also been demonstrated
that the Kalman filter reduces to the Lyapunov estimator under
certain conditions. Experimental results, including the AFM
imaging with the estimator used for amplitude demodulation
demonstrates the high-bandwidth performance of the method.

APPENDIX

TOTAL INTEGRATED NOISE

The TIN given white noise filtered through a system G(s)
is given by [21]

σ(G) =
√

∫ fbw

0
A|G( j2π f )|2d f (31)

where fbw is the measurement bandwidth, and A is the power
spectral density of the white noise. Consider the first-order
and second-order LPFs

G1(s) = 1

(2π fc)−1s + 1
, G2(s) = 1

((2π fc)−1s + 1)2

for some cutoff frequency fc > 0. Using (31) the TIN for
each system is given by

σ(G1) = √
A

√

fc atan

(

fbw

fc

)

(32)

σ(G2) = √
A

√

1

2
fc atan

(

fbw

fc

)

+ 1

2

fbw f 2
c

f 2
bw + f 2

c

. (33)
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TABLE I

TIN RATIO BETWEEN nth-ORDER AND FIRST-ORDER LPF

It can be shown that σ(G1) > σ(G2) for all fbw, fc > 0.
Furthermore, consider the case, where the measurement band-
width is much greater than the cutoff frequency, fbw  fc.
Then, the ratio between the TIN of each system is given by

lim
fbw→∞

σ(G2)

σ (G1)
= 1/

√
2.

Thus, the TIN of the second-order filter is a factor ∼0.71 the
TIN of the first-order LPF. By following the above-mentioned
procedure for the higher order filters:

Gn(s) = 1

((2π fc)−1s + 1)n
(34)

the TIN ratio between an nth order and a first-order LPF can
be found. Results are summarized in Table I. Note that the
TIN is reduced with increasing filter order.
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