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Abstract. Scanning laser lithography is a maskless method for exposing photoresist during semiconductor
manufacturing. In this method, the energy of a focused beam is controlled while scanning the beam or substrate.
With a positive photoresist material, areas that receive an exposure dosage over the threshold energy are dis-
solved during development. The surface dosage is related to the exposure profile by a convolution and nonlinear
function, so the optimal exposure profile is nontrivial. A gradient-based optimization method for determining an
optimal exposure profile, given the desired pattern and models of the beam profile and photochemistry, is
described. This approach is more numerically efficient than optimal barrier-function-based methods but provides

near-identical results. This is demonstrated through simulation and experimental lithography. © 2017 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.16.3.033507]
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1 Introduction

Lithography is a critical process in semiconductor manufac-
turing and is responsible for half of the production cost.! To
address the high cost of mask-set production, maskless
lithography methods have been developed for low-volume
and prototyping applications.” These methods include elec-
tron beam lithography® and ion beam lithography.* Electron
beam methods can provide a high resolution but suffer from
charging and proximity effects. lon beam methods are still in
an early stage of development and have yet to reach the res-
olution of electron beam methods. Both of these techniques
require specialized resist chemistry and suffer from a high
cost of equipment maintenance.*°

Scanning laser lithography is a cost-effective maskless
method, which has the advantage of using standard photo-
resist and process chemistry. In this method, a focused laser
is scanned over the photoresist while modulating the beam
power.

The foremost difficulties associated with scanning laser
lithography are the resolution, throughput, and complicated
exposure planning. However, the resolution has recently
been improved to 30 nm’ by using optimized near-field
probes.® The speed of nanopositioning systems has also
increased to allow 1-kHz scan rates’ and the exposure of
thousands of features per second.

The problem of optimal exposure planning is common to
all of the maskless lithography approaches that involve a
scanning beam. The exposure pattern defines the position
and intensity of the laser, electron, or ion beam. Without
a modified exposure pattern, the resultant image is a nonlin-
ear low-pass filtered version of the desired feature, due to the
finite resolution of the beam profile. Rule- and model-based
methods have been proposed for optimizing the exposure
profile. Rule-based methods use a predistortion pattern

*Address all correspondence to: Omid Tayefeh Ghalehbeygi, E-mail: omid.
tayefehghalehbeygi@uon.edu.au
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derived from previous simulation and experimental
outcomes.'*"® The efficacy of these methods becomes
doubtful in large-scale application, which requires a more
robust solution. On the other hand, model-based approaches
seek a solution by attempting to invert a model of the lithog-
raphy process.

In the model-based approach, an optimization problem is
defined that minimizes the predicted error in a developed
feature. This optimization is complicated by the nonlinear
behavior of the photoresist, the dosage constraints, and the
large problem size, which may range from 10° to >10°
variables.

The barrier method, introduced in Ref. 14, employs a non-
linear programming approach to find an optimal exposure
pattern. This method is computationally demanding and
becomes impractical beyond 10,000 variables. The computa-
tional requirements are primarily the calculation of first and
second derivatives of the cost function. Thus, an alternative
method with less computational time and complexity is
necessary.

1.1 Motivation and Contribution

The problem of mask optimization in standard projection
lithography has received significant attention in the litera-
ture. The first method for synthesizing a binary mask was
published in 1981 using the so-called iterative altering
projection method.'> Many other optimization algorithms
were proposed over the following years, including simulated
annealing,'® mixed integer programming,'” random pixel
flipping,'® genetic algorithms,'” and the Lagrangian
method,”® but none of these methods are suited to large-
scale problems. However, in the last decade, inverse lithog-
raphy methods have become popular for dealing with large-
scale problems. In this technique, nonlinear programming,*!
level-set,”” or gradient-based” methods are employed. The
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gradient-based methods have a lower computational cost
compared to the other methods.

In this article, the gradient-based method from mask-
based lithography is adapted for exposure optimization in
scanning beam lithography. In previous work, the simulation
of simple features in a workspace with 10° variables demon-
strated how quickly a solution can be achieved for a large
problem.? In this article, experimental results for complex
features are reported. The gradient-based method requires
less memory and provides a faster solution than other
techniques.'*'”?! In the following sections, the process
flow and model are described, followed by a description
of the optimization method and experimental results.

2 Experimental Setup and Process Flow

As shown in Fig. 1, the exposure optics is based on a trinoc-
ular microscope modified so that the primary beam path is
infinity corrected. 405-nm laser light is introduced via a sin-
gle-mode optical fiber and off-axis parabolic reflector, which
results in a Gaussian TEM, beam of sufficient width to fill
the back aperture of the Nikon 40 X /0.75 objective lens.
The focused beam is then directed at the sample that is posi-
tioned by an N-point LC402 nanopositioner. The beam is
also directed to a photodiode by a 50:50 beam splitter.
The measured power is used in a feedback system to pre-
cisely control the dosage. As shown in Fig. 2, the laser source
is modulated by an acoustic optical modulator that provides
power control and shuttering.

The glass substrates are initially washed in methanol and
acetone to remove debris. A Laurell WS-400A spin-coater is
then used to deposit AZ ECI3007 photoresist onto the sub-
strate. As per the manufacture’s specifications, the speed was
4000 rpm for 1 min, which resulted in a film thickness of
~700 nm. After the coating step, the photoresist was
baked at 90°C for 1 min to improve the substrate adhesion
and minimize dark erosion during development. After the
exposure process, the sample is immersed in AZ-726MIF
developer for 1 min removing the exposed pattern.

Collimator

Optic fiber

Photodiode

:qL,
To labview
&

lm

[
Objective lens
From labview

Nanopositioner

Fig. 1 The optical exposure system that focuses light from the fiber
onto the scanning platform.
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Fig. 2 Schematic of the laser source, modulation system, and fiber
coupling.

Finally, the sample is rinsed in distilled water and dried
using nitrogen gas.

3 Process Modeling

This section develops a model for the lithography process
described in Sec. 2. The model assumes that the photoresist
layer is sufficiently thin so that the beam profile remains
approximately constant throughout the depth. The optical
properties of the film, which are a function of the exposure
state, are also assumed to be constant. Other optical effects,
such as scattering and cavity formation, are ignored.
Moreover, all functions for the exposure pattern, beam pro-
file, and dosage are defined as matrices, which represent
these functions at discrete locations in a workspace. The
workspace is modeled in a N X N square matrix discretized
into N pixels along x and y axes

x=y=1[0,A2A,....(N-1)A)], (1)

where A is the grid resolution.

3.1 Beam Profile

The light intensity (in W/m?) at the focal point of the
objective lens can be analytically expressed as>

op —2(‘22"2)
B(x,y) = e "o, 2
0

where x and y represent the transverse axes of the beam at
focal point wy, and P is the power.

To replace a convolution operation by a matrix multipli-
cation, it is convenient to define an N X N array of N X N
matrices B, where each matrix in the array B%! represents
the spatial beam intensity with a focal point centered at
(x¢,y1), and ijl represents the intensity at the location
(x;,y;), that is
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Fig. 3 The normalized intensity of a Gaussian beam, where the focal
point is located in the middle of the workspace (x, =5 um and
y; =5 um). The beam width is wy = 450 nm.

Bkl — 2P Z(Xi - xk)2 + <yj - )’1)2
W aw? xp| wi
0 0

fori,j=1,...,N, and, k/I=1,...,N. 3)
This normalized intensity is shown in Fig. 3, where
the focal point is located in the center of the workspace

(By).

3.2 Exposure Modeling

The exposure and dosage matrices are defined by E and
D € RY*V  respectively. That is, the element E; ; represents
the exposure energy at location (xy, y;), where E; ; refers to
the k’th row and [’th column. The dosage D represents the
cumulative energy per unit area, calculated by summing the
dosage from each exposure. Since the dosage from each
exposure is the product of energy and the associated
beam profile B!, The dosage matrix D is

M=

D= Z E; B*. 4)

1 I=1

~
Il

Figure 4 shows the matrix D, when E contains a single
nonzero entry at (x;,y;).

3.3 Photoresist Modeling

The photoresist model describes the fraction of chemical
conversion as a function of dosage. The photoresist effects
can be precisely modeled by Dill’s model,”® Mack’s model,*’
or other models.?®? In large optimization problems, compu-
tation time is an important consideration that can be reduced
by using a simplified model, for example, the variable thresh-
old resist model® and the constant threshold resist model.*!
The latter model indicates 100% conversion when the pixel’s
dose is above a threshold. That is

A 1 D,;>T
= ij = Ce
Zl,j {0 Di,j , for L] 1,...,N, ®))

where Z is the predicted exposure result and 7 is the
threshold.
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Fig. 4 The resulting D matrix which is the product of multiplying the
only nonzero array of the E matrix, E ; as a scalar, by the coordinated
beam matrix B/,

In practice, the photoresist conversion is a continuous
function of dosage. The sigmoid function is an approxima-
tion of this process

1

=GOy OrbI=1o N ()

Z;=f(Dy)
where the parameter a dictates the steepness of the sigmoid
and D5, is the dosage where half of the photoresist is con-
verted. When a is large, the sigmoid approaches the thresh-
old model. Figure 5 shows the behavior of the sigmoid
function with different values of a.

By combining the exposure and photoresist model, the
resulting feature can be predicted from an arbitrary exposure
pattern. This model is schematically shown in Fig. 6.

3.4 Resolution Limit

The resolution of both maskless and traditional optical
lithography is fundamentally limited by diffraction. The min-
imum resolution is described as®?
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Fig. 5 Sigmoid function for different steepness parameter varying
a =5, 10, 20, 40 with the same Dgq,.
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Fig. 6 The forward process model, which maps an exposure pattern
(E) onto the output features (Z).

A
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where 4 is the wavelength, NA is the numerical aperture of
the objective lens, and k; is a process parameter, which is
dependent on variables such as the photoresist thickness
and dispersion. For mask-based lithography, with a phase-
shifted mask and resolution enhancement, the value of k;
is typically 0.35.% Similar values for k; have been reported
for maskless optical lithography.?

4 Model-Based Optimization

There are several ways to formulate the optimization
problem.”* Tn this article, the cost function is the
2-norm of the difference between the desired and predicted
output. That is

N
Ji(E) = Z Z (Z:ij— Z:))%, ®)
i=1 j=1

where Z represents the output image and Z indicates
the desired image. In addition, a regularization term is
required to suppress excessive dosage, which results in
light scattering and reduced resolution. The regularization
term is

N

J2(E) =7 > D}, ©9)

i=1 j=1

where y is a user-defined scalar. The overall cost function
is

J(E) =J1(E)+ JL(E). (10)

Since the exposure power can only be positive, each
element in £ must be a nonnegative. Therefore, optimal
exposure pattern E* is then achieved by solving the follow-
ing expression:
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E* = arg mbinJ(E), st E>0. (11)

4.1 Parameter Transformation

As described in Eq. (11), the feasible domain is nonnegative
values. In addition, a dosage exceeding 1.5 times the thresh-
old generally causes undesired results due to overexposure
and scattering. Therefore, the maximum value of each expo-
sure spot can be restricted to 2, that is

0<E;<2 fori,j=1,...,N. (12)
The bounded-constraint problem generally adds more

complexity; however, the problem can be converted to
unconstrained by using the following transformation:®

E =1+ cos(0), (13)

® = arccos(E — 1), (14)
where O is a fictitious matrix with unconstrained elements
@,-,jER fOl"i,jZl,...,N.

By replacing the parameters E with ©, Eq. (8) becomes

J1(0)
N N 1 2
5 3)5] IR |
=1 j=1 l+e—“( el ,:1{[l+COS(®kA1)]B,k_‘,{}—D50=‘/,~>

(15)

and Eq. (9) becomes

1,0) =7 (ZZ{[lJrcos(@k,,)}Bfﬁj}) . (16)
=1

i=1 j=1 \k=1

With the transformation of variables, the optimization
problem becomes

J(©) = J,(0) +J,(0), (17)

®* = arg n%n](@), s.t ® € R, (18)

where ©* represents the optimal exposure pattern.

4.2 Problem Solution

The optimization problem expressed in Eq. (18) is a nonlin-
ear and importantly, nonconvex problem due to the thresh-
olding function f(-) and the cosine function. However, the
gradient-descent method can be applied directly as it does
not require a second derivative. To apply this method,
the gradient of the cost function needs to be calculated
analytically.

Jul-Sep 2017 « Vol. 16(3)
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4.2.1 Gradient calculation

Rather than vectorization of matrices to derive the first
derivative, all matrices are kept in two-dimensional (2-D)
form. Thus, the gradient of the cost function is

g2 Vel = Vol 4+ Vels. (19)

The gradients of the two terms in the cost function are

o,
Vel = —, 20
o/1 =35 (20)
and
o,
Vel = —. 21
o2 =79 21

Analytical expressions for the gradients are derived in the
Appendix. It is shown that these expressions simplify to

Vol = 2a{B ® [(z - 2)0z0(1 - 2)} }@ sin(@), (22)

and
VoJr = =27(B ® D)Osin(0), (23)

where © is the element-by-element multiplication operator
and ® is the convolution operator.

To expedite the calculation of the discrete convolution
in Egs. (22) and (23), the fast Fourier transform (FFT) is
utilized. MATLAB’s™ built-in multithreaded FFT algorithm
provides a significant improvement in numerical efficiency.
By applying the Fourier transform to Eqgs. (22) and (23)

Vo1 =2aF {F(B)OF((Z-2)0Z0(1 - 2)]}Osin(®),
(24)

and

Vols = 2y F Y F(B)OF(E)OF (B,)}©sin(0), (25)

where F and F~! denote the Fourier and its inverse,
respectively.

Another parameter affecting the performance of the
gradient-descent method is step size. For fixed values, the
optimization problem has difficulty converging to a solution.
Thus, this value is dynamically selected in each iteration
based on the Barzilai—-Borwein approximation described in
Sec. 4.2.2.

4.2.2 Step-size computation

The Barzilai-Borwein method provides an approximate
value for the Newton step size without a Hessian calculation.
The step size f can be calculated by solving

%, (26)

1
P = arg min - [|Ax — fAg(x)

where Ax =x; —x;,_; and Ag(x) = Vf(x) — VI (xp_1)-

d1
dp2

Ag(x)TAx
Ag(x)TAg(x)’
This approximation significantly improves the conver-

gence speed of gradient-based methods. To implement the
above equation, the following replacements are required

[Ax = pAg() > =0= p= @27)

vec{A®}—Ax, vec{Ag(®)}<Ag(x), (28)
where the vec operator stacks the columns of a matrix into a
long vector.

By calculating the cost function gradient and a dynamic
step size into each iteration, the steepest descent algorithm
(Algorithm 1) is outlined below

4.3 Complexity Analysis Per Iteration

For the algorithm under consideration, the convolution oper-
ation is the most time-consuming. Each iteration involves
three 2-D convolutions of N X N matrices, which has a com-
plexity of O(N*). Using the FFT function in MATLAB®,
the overall complexity reduces to O(N? log N?). Thus,
for N = 100, the complexity is equal to 4 X 10* operations.
The largest matrix stored in memory during each iteration
is NXN.

In the barrier method, the most time-consuming calcula-
tion involves replacing the convolution with a multiplication
operation,'* which leads to the creation of an N2 x N2
matrix. As this matrix is multiplied by itself twice in each
iteration, the overall complexity is O(N®). However, by
using the FFT to compute this convolution, the complexity
can be decreased to O(N* log N*), which leads to a com-
plexity of 8 x 108 when N = 100. This is four orders-of-
magnitude more operations than the gradient algorithm pro-
posed in this work. In addition, the memory required to con-
struct an N? x N? matrix is a significant problem.

Due to the significantly reduced complexity and memory
requirements, the proposed algorithm is significantly more
efficient, per iteration, than the log-barrier method described
in Ref. 14. However, it should be noted that the algorithm in
Ref. 14 utilizes a Hessian approximation that may result in
fewer iterations before a termination condition is achieved.
In practice, the most significant limitation is memory, not the
number of iterations. In this regard, the proposed gradient
method requires an N X N matrix to be constructed per iter-
ation, which is 1/N? fewer elements than the log-barrier
method in Ref. 14.

Algorithm 1 Solve Eq. (18) using the steepest-descent method.

Require: y >0, and g € R
while Termination condition is not satisfied do
Compute the gradient vector g £ VJ(©)
Compute the step size by Barzilai-Borwein approximation S

Update @' <@ — |5, |g*

Differentiating Eq. (26) with respect to f and equating it end while
to zero provides an approximation of #. That is
J. Micro/Nanolith. MEMS MOEMS 033507-5 Jul-Sep 2017 « Vol. 16(3)
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Fig. 7 A comparison of two optimization procedures where the left column starts with an educated
guess and the right column starts with a random guess. In this example, the random initial

guess requires a period of optimization and then follows a similar trajectory to the educated initial
guess.
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5 Simulation and Experimental Results

5.1 Simulation Results

The following simulations are based on a Gaussian 450-nm
beam width, 100-nm grid resolution, and a workspace of
10 ym x 10 gm, which results in a 100 X 100 array. The
user-defined constants y and a are 0.3 and 5, respectively.

The test pattern for evaluating the proposed algorithm is
shown in Fig. 7(a). This pattern has a variety of features,
which examines the resolution for parallel, circular, and
irregularly geometries. The final exposure pattern after
10* iterations is shown in Fig. 7(b). This comparison
shows a strong correlation between the desired and predicted
features. However, where the features become significantly
smaller than the beam width, the contrast becomes poor. For
example, the sharp ends of triangles are not resolved.

In the example considered, the final solution was indepen-
dent of the initial guess, as observed by comparing the left
and right column of Fig. 7.

5.2 Experimental Results

The first step is to determine the threshold value of the photo-
resist. Predicting this value from specifications is inaccurate
as the threshold dosage is related to the thickness of the
film.*® Based on the specifications, the photoresist is fully
exposed by a dosage of 40 mJ/cm?. When a = 5, this is
equivalent to Dsy, = 20 mJ/cm?. The exact value is
found empirically by performing a series of experimental
exposures with Dsyg ranging from 15 to 25 mJ/cm?.
Incidentally, the experimentally determined value for Dsgq,
was 20 mJ/cm?, which is identical to that predicted from
the specifications.

The exposure and development process proceeded
according to Sec. 2. An electron micrograph of the developed
features is shown in Fig. 8. A close correlation between the
predicted and experimental features can be observed. Some
overexposure can be observed in the horizontal rectangles
due to proximity effects, which have led to a microloading
effect after developing the resist. This issue was alleviated to
some extent by employing a regularization term in the cost
function, which minimizes the total exposure energy and
indirectly reduces scattering and proximity effects.

The background exposure dosage is thought to be the
most significant source of error in the experimental results.
Since the laser on-time is microseconds and the nanoposi-
tioner settling time is milliseconds, a large portion of the
total time is consumed waiting for the nanopositioner to set-
tle with the laser off. While the laser is assumed to be off, the
beam power is nonzero due to the finite contrast ratio of the
acousto-optic modulator. In the experimental setup, the mea-
sured contrast ratio was 1:6000. Although this background
exposure energy could potentially be modeled, it is simpler
to improve the contrast ratio by optical means, which is a
topic of current research.

Other potential error sources include a nonideal beam pro-
file and varying photoresist thickness. Despite the use of a
single-mode fiber, the beam profile may not be perfectly
Gaussian. To eliminate this potential error source in the
future, a 100-nm pin-hole will be used with an XY scanner
to experimentally identify the beam profile. If this varies
significantly from that theoretically predicted, then the
experimental data could be used directly in the optimization.
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Fig. 8 Scanning electron micrograph of the developed test pattern.
The bottom image includes an overlay of the predicted feature
geometry.

In this work, the photoresist thickness was 700 nm. This
is an extremely robust thickness that could withstand a range
of deposition and etching processes. However, by diluting
the photoresist with an organic solvent, the final thickness
and, hence, variability could be reduced at the expense of
robustness. The use of thinner films is presently being
explored.

6 Conclusion

This article describes a gradient-based method for optimiz-
ing the exposure profile of scanning beam lithography proc-
esses. The proposed method is significantly more efficient
than other methods as a second derivative of the cost function
is not required. Simulation and experimental results show
robust convergence even with complex geometries.

The experimental exposure and development of a test pat-
tern demonstrated a minimum feature size of ~1 um. The
foremost limitation at present is thought to be background
dosage due to finite contrast ratio in the exposure system.

Present optimization research is focused on the conver-
gence properties of the algorithm, including whether opti-
mality can be guaranteed under any particular conditions.
Other optimization research is aimed at increasing the expo-
sure speed by minimizing the number of nonzero exposures
and taking the dynamics of the nanopositioner system into
consideration.

Future improvements to the optical system include an
increased contrast ratio and direct beam profile measurement.
The use of thinner photoresist films is also under investigation.
In regards to the optimization, alternative cost functions are
under consideration, which directly penalize proximity and
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microloading effects, rather than the broader measure of total
exposure energy.

Appendix: Gradient Derivation

In the following, gradient of the cost function [Eq. (17)] is
derived. The first term in the cost function can be rewritten

N

N
=3 (Zij- 2z (29)

i=1 j=1

where
1
N N k.l ’
I+exp [‘“(Zk:l domtlt +COS(®I¢,1)]Bi,j}_D50%>}
(30)

Zi.j:

The partial derivatives of J;(®) with respect to ®,, , are

aJl Y & OZ_-
= ZZ lJ lj <_ a@mjn>' (31)

i=1 j
The partial derivatives of Z with respect to ©,,,, are

()Z
6®m "

R exp( {Zk 13 [1+cos(Oy )] B}

m.n

DSO%})

Then
7,(© N :
6(1)( ):2(1Sin(@m’n)zzzi,j(l_zi,j) Zi;-Z; B
m,n i=1 j=I
(37)

Therefore, the gradient matrix of the first term is

0J,(©)  9J,(8) 0J,(©)
90, 90, 7T Oy
0J,(©)  9J,(8) 0J,(©)
Vo, = | ®n 99 ®un | (38)
o/(©) a(©)  a/,(8)
90y Oy, 7T 0Oyy
—2a sin(@))@{B ® {(z —2)0Z0(1 - 2)} } (39)

By using FFT function instead of convolution
Vol =207 F(B)OF[(Z-2)020(1-2)| osin(©).
(40)

Moving on to the second term in the cost function, the
regularization term can be rewritten as

N N
=7 > (D) (41)

i=1 j=1

= v v > where
(1 +exp {_(Z(Zk:l >t +COS(®k.1)]Bi,j}_D50%>} ) NN
32 Dij=Y_ {[1+-cos(,)]B]}. 42)
=1 =1
NN The partial derivative of J,(®) with respect to ©,,,,
A d
=(Zi;) 0®m,neXp{ {;; [1+cos(©y,)]B; DSO%}]’ 01,(0) QyXN: ZD (()Di,]) 43)
33) 00,11 i=1 j=1 s 08, 7
. N XN X 4 - kl
= 2 Pen[-a{ 3l Heost@ulB D f]. =2 D P X[+ eostouB]
=1 =1 i=1 j=1 mn |\ k=1 I=1
9 N N (44)
- [—a{zl ; + cos(@y)|BY! — DSO%H, (34)
m,n k=1 I= N N
= =2y sin(0,,,, Z ZDUB:”J”. 45)
P i=1 j=1
= 2;’,‘(1 - 2 ) . . .
’ 00,,. Thus, the gradient matrix of the second term is
N N .
: [_a{z 1+ cos(©y,)]B}| — Dso%} ' (35) Vol> = =2y sin(0)O(B ® D). (46)
= By using FFT function instead of convolution
A~ N = _ -1 i
=aZ;;(1-2;;)sin(®,,,)B}". (36) Vol =2y F {F{BYOF{E}OF{B,}}Osin(®). (47)
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