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Abstract

Mechanical systems experience undesirable vibration in response to environmental and

operational forces. Slight vibrations can limit the accuracy of sensitive instruments or

cause error in micro- and nano-manufacturing processes. Larger vibrations, as experienced

by load bearing structures, can cause fatigue and contribute to mechanical failure. The

suppression of vibration is a necessity in many scientific and engineering applications.

Piezoelectric and electromagnetic transducers have been employed in countless applica-

tions as sensors, actuators, or both. In cases where traditional passive mechanical vi-

bration control is inadequate, piezoelectric and electromagnetic actuators have been used

within feedback control systems to suppress vibration. A counter-active force is applied

in response to a measured vibration.

In this work, a new approach to the control of mechanical vibration is introduced. By

presenting an appropriately designed electrical impedance to the terminals of a piezo-

electric or electromagnetic transducer, vibration in the host structure can be suppressed.

Standard LQG, H2, and H∞ synthesis techniques are employed to facilitate the design of

optimal shunt impedances. No feedback sensor or auxiliary transducer is required.

Vibration control problems are typically based on the minimization of displacement or

velocity at a single point. For spatially distributed systems, such as aircraft wings, any

single point may not suitably represent the overall structural vibration. Spatial system

identification is introduced as a method for procuring global models of flexible structures.

Spatial models can be used to properly specify the performance objective of an active

vibration control system.

Experimental results are presented throughout to clarify and validate the concepts pre-

sented.





1

Introduction

Piezoelectric transducers have found countless application in such fields as vibration con-

trol [49], nano-positioning [28], acoustics [97], and sonar [110]. This work is concerned with

the application of piezoelectric transducers in the field of structural noise and vibration

control.

1.1 Piezoelectric Transducers

The phenomenon where a volume of material undergoes shape transformation when ex-

posed to an electric field and vice-versa, is known as the piezoelectric effect. Pierre and

Jacques Curie originally documented this effect in 1880 after observing the accumulation

of electric charge on the surface of certain crystals under stress. After further investigation

they were also able to demonstrate the complimentary effect where an applied field results

in deformation.

A number of naturally occurring materials exhibit weak piezoelectric behaviour, examples

include: quartz, tourmaline, topaz, and Rochelle salt [18]. Advances in materials science

have permitted the manufacture of new piezoelectric materials with far superior properties.

Such materials have given rise to practically applicable piezoelectric actuators.

A piezoelectric material is characterized by the existence of electric dipoles distributed

throughout its volume. Each dipole represents a small domain whose constituent molecules

are aligned and result in a net polarization. The presence of an electric field causes a

crystalline deformation along the same axis in which each dipole is aligned. As it occurs
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in commercially produced materials, the orientation of each dipole is random. In the

presence of an applied electric field, the average deformation throughout the volume is

zero. The same is true of the sensing effect; due to internal cancellation, an applied stress

results in no net surface charge.

One of the key properties of a piezoelectric material is its Curie temperature. At this

temperature the crystalline structure exhibits a simple cubic symmetry with no dipole

moment. A piezoelectric transducer is manufactured by raising the temperature to just

below the Curie temperature and applying a strong electric field. Through this polariz-

ing (poling) treatment, domains most nearly aligned with the electric field expand at the

expense of domains not aligned with the field. The element lengthens in the direction of

the field. When the electric field is removed most of the dipoles are locked into a con-

figuration of near alignment. The element retains a permanent polarization, the remnant

polarization, and is permanently elongated.

When a poled piezoelectric material is compressed, the dipole moment is altered resulting

in a net generated charge. This effect is referred to as the direct piezoelectric effect.

Conversely, if an electric field is applied to the material, the element will lengthen and its

perpendicular dimensions will contract.

The most commonly used piezoelectric material in actuating applications is lead zirco-

nium titanate (PZT). PZT is a stiff ceramic material characterized by high d31 and d32

strain coefficients. Another material more commonly used in sensing applications is poly-

vinyllidene flouride (PVDF), a semi-crystalline polymer film. Although PVDF develops

only around one fifth the strain of PZT for the same voltage, the material is extremely

compliant and easily cut and bonded to irregular surfaces. PZT is around 40 times as stiff

and has a permitivity 100 times greater than PVDF.

A more detailed description of piezoelectric materials, their properties, and applications

can be found in references [42, 94, 60, 61, 62, 1, 3].
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Figure 1.1: A piezoelectric transducer.

1.1.1 Modeling

Referring to Figure 1.1, the electro-mechanical behaviour of a piezoelectric transducer can

be described by the following equations [42]:

εi = SEijσj + dmiEm (1.1)

Dm = dmiσi + ζikEk (1.2)

where the indices i, j = 1, 2, . . . , 6 and m, k = 1, 2, 3 refer to different directions within the

material coordinate system. In equations (1.1) and (1.2) ε, σ, D, and E are respectively

the strain, stress, electrical displacement (charge per unit area) and the electric field. In

addition SE , d, and ξ represent the elastic compliance, piezoelectric strain constant, and

material permitivity.

The piezoelectric strain constant dij is defined as the free strain developed in the jth

direction per unit of applied electric field in the ith direction. Piezoelectric actuators, as

shown in Figure 1.1, are typically polarized in the z or 3 direction. For one dimensional

motion, the z directional strain can be simplified to

ε3 = d33
V

h
(1.3)

where V is the applied voltage and h is the material thickness. By definition, a voltage of
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C p

v p

Figure 1.2: The electrically equivalent model of a piezoelectric transducer.

the same polarity as the poling orientation results in a positive strain or elongation. Due

to the Poisson coupling, elongation in the z (3) direction implies a contraction in the x

(1) and y (2) directions, thus d31 and d32 are opposite in sign to d33. The developed x (1)

and y (2) directional strain is

ε1 = d31
V

h
(1.4)

ε2 = d32
V

h
. (1.5)

In vibration control, piezoelectric transducers are laminated onto the surface of a host

structure. As a sensor, the open circuit voltage is proportional to the strain over the

region covered by the transducer. As an actuator, an applied voltage results in a moment

or transverse force. To model such interaction, the electro-mechanical properties of the

transducer must be coupled to the mechanical and dynamic response of the structure. A

number of methods for deriving such models can be found in [4, 22, 42].

A common electrical model for coupled piezoelectric transducers is shown in Figure 1.2

[32, 48, 120]. The transducer behaves like a capacitor Cp is series with a strain-dependent

voltage source vp. Models including hysteresis, dielectric loss, and resistance can be found

in [3].
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Figure 1.3: A flexible structure controlled by three electrically parallel piezo-

electric transducers. The structure experiences a dynamic displacement d(r, t) in

response to a generally distributed force f(r, t).
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Figure 1.4: A typical active noise control problem.

1.2 Vibration Control

Piezoelectric transducers have been used extensively as actuators and sensors for vibration

control in flexible structures. Consider the typical scenario shown in Figure 1.3. A flexible

structure, bounded along the bottom edge, is excited by a force f(r, t) distributed over

the surface. The goal is to suppress resulting vibration measured at a point r. Depending

on the application, it may be desirable to minimize displacement, strain, velocity, or

acceleration.

1.2.1 Active feedback control

Active feedback control involves the use of sensors and actuators to minimize structural

vibration. The vibration is sensed directly and used to derive an actuator voltage Va

counter-active to the applied disturbance. Typical vibration sensors include accelerom-

eters, velocimeters, and strain sensors. The regulation problem is shown in Figure 1.4,

where G is the plant model, C is the controller, w is the representative disturbance, z

is the performance variable, and y is the measured output. The controller is designed to

minimize the transfer function from an applied disturbance w to the performance variable

z. As an example, in Figure 1.3, d(r, t) is the performance signal, f(r, t) is the disturbance,

and Va is the control signal. The measured output y would typically be obtained from an

additional piezoelectric transducer or accelerometer.

The foremost difficulties associated with active feedback control are due mainly to the
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Va
C  (s)

v p

Figure 1.5: A sensori-actuator drive circuit that estimates the internal piezoelec-

tric voltage [7].

intrinsic nature of the plant G. Mechanical systems are of high order and contain a large

number of lightly damped modes. The modeling and control design for such systems is well

known to pose significant challenges. In addition, environmental variation of the struc-

tural resonance frequencies can further complicate the problem by compromising stability

margins and restricting performance. Examples of active feedback control incorporating

piezoelectric actuators can be found in references [45, 46, 49, 73, 73].

1.2.2 Self-Sensing

In active vibration control, and many other applications, piezoelectric transducers are

used exclusively as either sensors or actuators. Dosch, Inman, Garcia [32] and Anderson,

Hagood, Goodliffe [7] were able to demonstrate a technique now referred to as piezoelectric
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self-sensing, or sensori-actuation. By subtracting the capacitive voltage drop from the

applied terminal voltage, a reconstruction of the internal piezoelectric strain voltage can

be obtained. A circuit capable of performing this computation is shown in Figure 1.5. As

illustrated, the reconstructed strain voltage effectively eliminates the need for an auxiliary

feedback sensor or transducer. A similar technique estimating the rate-of-strain was also

presented in [7].

Although piezoelectric self-sensing systems inherit the usual problems associated with

active feedback control, an additional advantage is realized. The transfer function from

an applied actuator voltage to the measured strain is perfectly collocated. This property

gaurantees closed-loop stability for a certain class of controller, and in general, simplifies

the design process [78].

The estimation in piezoelectric self-sensing techniques is highly sensitive to the transducer

capacitance value. A sensing capacitance not perfectly matched to the transducer ca-

pacitance can result in significant errors in the strain estimation. If the estimate is used

within a feedback control loop, such uncertainty may severely effect performance or cause

instability. In addition to static error in the capacitance value, the transducer capacitance

also varies with temperature, load, and age. An attempt to address the problem of capac-

itance sensitivity can be found in [118, 24, 2]. Despite the associated problems, a number

of applications utilizing piezoelectric self-sensing actuators have appeared throughout the

literature [5, 15, 50, 68, 115].

1.2.3 Shunt Control

Shunt control involves the connection of an electrical impedance to the terminals of a

piezoelectric transducer, as shown in Figure 1.6. Impedance designs have included resis-

tors, inductive networks, switched capacitors, switched networks, negative capacitors, and

active impedances. A full appraisal of these techniques is presented in Chapter 2.

Compared to active feedback control, shunt damping has a number of associated benefits

and disadvantages. The majority of shunt circuit configurations do not require a paramet-

ric model of the plant for design purposes, and are correspondingly easier to implement
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Figure 1.6: Piezoelectric shunt damping.

and tune. Shunt circuits do not require a feedback sensor, and in some circumstances,

may not require any support electronics or power supply at all.

1.3 Applications

Piezoelectric vibration control has shown promise in a variety of applications ranging from

consumer and sporting products to satellite and fighter aircraft vibration control systems.

In the consumer products category, a number of companies such as HEAD and K2 have

invested in high-performance and novelty items such as composite piezoelectric tennis

racquets, skis, and snowboards [15]. These products typically involve the use of a shunted

piezoelectric transducer to decrease vibration. Benefits include increased user comfort,

better handling, and performance.

The next generation of hard disk drives may also incorporate piezoelectric vibration control

systems. By decreasing mechanical vibration in the disk head, the seek-time, and hence

data rate and storage density can be increased [44].

A considerable research effort has been undertaken on the structural control of military

aircraft. In certain modes of flight, buffet loads on wing and stabilizer airfoil can result

in high levels of vibration. Such vibration can lead to mechanical fatigue and reduces

the flight envelope and lift performance of an airfoil [108]. Examples include: FA-18

wing, body, and stabilizer control [57], and F-15 panel control [121]. A piezoelectric
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Figure 1.7: A piezoelectric laminate FA-18 vertical stabilizer. The author is in

the foreground (Courtesy of T. Ryall, DSTO, Fishermans Bend).

laminated FA-18 stabilizer is shown in Figure 1.7. Piezoelectric transducers have also

been incorporated into helicopter rotor blades for the suppression of lightly damped lag

modes in hingeless rotors [68].

Other noise control applications include: suppression of acoustic radiation from underwater

submersibles [129], launch vehicle structural and acoustic noise mitigation [97, 31], acoustic

transmission reduction panels [67, 107], and active antenna structures [45].

A primary consideration in the design of space structures is the vibration experienced

during launch. In future, structures incorporating piezoelectric transducers may form the

basis of light-weight, high performance mechanical components for use in space applica-

tions [5].
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1.4 Outline

This thesis is presented in seven chapters: 1) Introduction, 2) Piezoelectric Shunt Damp-

ing, 3) Implementation, 4) Active Piezoelectric Shunt Control, 5) Electromagnetic Shunt

Control, 6) Spatial System Identification, and 7) Conclusions.

Chapter 2 begins with a review of piezoelectric shunt damping techniques. The benefits

and difficulties of each technique are discussed in relation to active feedback control and

other shunt techniques. The difficulty in implementing resonant shunt damping circuits

is addressed by introducing the synthetic impedance. Four modes of an experimental

structure are shunt damped using this technique.

In Chapter 3, practical issues relating to the construction of a synthetic impedance are

discussed. A new type of current and charge amplifier is presented that alleviates many

of the previous problems associated with DC offsets and drift. A switch mode amplifier is

also presented and tested experimentally by implementing a dual-mode piezoelectric shunt

circuit.

A new technique for the design of piezoelectric shunt circuits is presented in Chapter 4.

The problem of impedance design is cast as a standard regulator problem to allow the

application of synthesis techniques such as LQG, H2, and H∞. Superior performance to

passive circuits is demonstrated experimentally on a cantilever beam.

Chapter 5 introduces the concept of electromagnetic shunt damping. Alike piezoelectric

transducers, passive and active shunts can be connected to the terminals of an electromag-

netic transducer in order to reduce structural vibration. A general modeling and design

framework is presented for the shunt control of electromagnetic actuated systems. An

experimental electromagnetic system is successfully controlled through the connection of

an active shunt impedance.

In the design of active shunt and feedback controllers, a single point on the structure is

often used to represent structural vibration. In Chapter 6, a technique is presented for

obtaining spatially continuous dynamic models of flexible structures. Spatial models can

be employed in the design of spatially weighted control systems.
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The thesis is concluded in Chapter 7 with a brief summary of the results and suggestions

for future research.



2

Piezoelectric Shunt Damping

Piezoelectric shunt damping is a popular technique for vibration suppression in smart

structures. Techniques encompassed in this broad description are characterized by the

connection of an electrical impedance to a structurally bonded piezoelectric transducer.

Such methods do not require an external sensor, may guarantee stability of the shunted

system, and do not require parametric models for design purposes.

The first goal of this chapter is to provide a brief review of the various techniques falling

into the category of piezoelectric shunt damping. A large sub-class of piezoelectric shunt

damping circuits, the so-called resonant shunt damping circuits, are simple to design and

known to introduce significant system damping. An introduction and appraisal of these

techniques is presented in Section 2.1.1. In order to ascertain the structural influence of a

piezoelectric shunt impedance, the interaction between mechanical structure, piezoelectric

transducer, and electrical impedance is modeled in Section 2.3.

A number of practical issues have prevented the wide spread application of piezoelectric

shunt damping systems. In Section 2.2, the synthetic impedance is introduced as a practical

technique for implementation of resonant shunt circuits. The presented techniques are

applied experimentally to a piezoelectric laminate structure.

2.1 Review: Piezoelectric Shunt Damping

A summary of common piezoelectric shunt damping techniques is shown in Figure 2.1.

Each method is discussed in the following sub-sections.
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Figure 2.1: Summary of piezoelectric shunt damping techniques.
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Figure 2.2: (a) Series and (b) Parallel single-mode shunt ciruits.

2.1.1 Linear Techniques

A linear shunt circuit is defined as any impedance with a linear current-to-voltage rela-

tionship over the bandwidth of interest. By this definition, adaptive techniques which

contain extremely low-frequency non-linear behavior are classed as linear.

Single-mode

Although first appearing in [40], the concept of piezoelectric shunt damping is mainly

attributed to Hagood and von Flotow [48]. A series inductor-resistor network, as shown

in Figure 2.2 (a), was demonstrated to significantly reduce the magnitude of a single

structural mode. Together with the inherent piezoelectric capacitance, the network is

tuned to the resonance frequency of a single structural mode. Analogous to a tuned

mechanical absorber, additional dynamics introduced by the shunt circuit act to increase

the effective structural damping [48]. An analytic method for determining an effective

resistance value was also presented by the same authors [48]. The parallel circuit variation

shown in Figure 2.2 (b) was proposed by Wu [122]. Although the two circuits, series and

parallel, achieve similar performance, the parallel structure is less sensitive to sub-optimal

resistance values.

Resistive shunt damping was also proposed by Hagood and von Flotow in reference [48].
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Figure 2.3: A three-mode Hollkamp shunt circuit [56].

With presently available transducers, a resistive impedance offers very little mechanical

damping. The technique is equivalent to an extremely light visco-elastic damping treat-

ment [48]. Future transducers utilizing high d33 electro-mechanical coupling factors may

be of greater use.

Single-mode damping can be applied to reduce several structural modes with the use

of as many piezoelectric patches and damping circuits. Problems may result if these

piezoelectric patches are bonded to, or embedded in the host structure. First, the structure

may not have sufficient room to accommodate all of the patches. Second, the structure

may be altered or weakened when the piezoelectric patches are applied.

Multi-mode

After the initial introduction of single-mode damping, researchers began searching for a

method of suppressing multiple structural modes with a single piezoelectric transducer.

Using the circuit shown in Figure 2.3, Hollkamp was able to suppress the second and third

modes of a cantilever beam by 19 and 12 dB respectively. The circuit requires as many

parallel branches as there are modes to control. A numerical optimization was proposed

for determining suitable component values. This technique requires an objective function

fully parameterized by all of the circuit elements. As a result, the optimization is highly
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Figure 2.4: A dual-mode current-blocking shunt circuit [123].

non-linear and correspondingly difficult to solve.

Another technique, proposed by Wu and co-authors, is to insert current-blocking networks

in each parallel branch [123, 124, 127]. Referring to Figure 2.4, each shaded current-

blocking network is tuned to the frequency of an adjacent mode in order to decouple

each branch. The number of anti-resonant circuits in each parallel branch depends on the

number of structural modes to be shunt-damped simultaneously. In Figure 2.4, R1 − L1

and R2 − L2 are tuned to resonate at the frequency of a single structural mode. The

current-blocking networks L̂1 − Ĉ1 and L̂2 − Ĉ2 are then tuned to the target resonance

frequency of the neighboring branch. In this way, at the resonance frequency of each

parallel branch, the remaining branch is effectively open circuit. A systematic approach

for determining effective resistance values is presented in references [37, 11]. Even in its

simplest form [127], the complexity and order of current-blocking topologies restrict their

use to a maximum of three modes.

More recently, the current-flowing shunt circuit was introduced in [12, 14]. Shown in

Figure 2.5, a current-flowing shunt circuit requires one parallel branch for each structural

mode to be controlled. The shaded current flowing network L̂i − Ci in each branch is

tuned to approximate a short circuit at the target resonance frequency whilst approxi-

mating an open circuit at the frequencies of adjacent branches. The remaining inductor
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Figure 2.5: A three mode current-flowing shunt circuit [14].

and resistor in each branch Li −Ri, are tuned to damp the ith target structural mode in

a manner analogous to single-mode shunt damping. The current-flowing network decou-

ples the multi-mode problem into a number of approximately independent single-mode

designs. Unlike current-blocking techniques, the order of each current-flowing branch does

not increase as the number of modes to be shunt damped simultaneously increases. Be-

sides greatly simplifying the tuning procedure, current-flowing shunt circuits require less

components and gracefully extend to damp a large number of modes simultaneously, e.g.

five modes of a simply supported plate [14]. Further practical advantages are realized after

simplifying the circuit, only a single non-floating inductor is required per branch [14].

The electrical dual of a current-flowing circuit, the so-called series−parallel circuit shown

in Figure 2.6 was proposed as a method for reducing inductive component values [39]. Each

network in series Ci− L̂i−Li−Ri contains two sub-networks: a current-blocking network

Ci−L̂i, and a parallel single-mode damping network Li−Ri. Both the current-blocking and

damping networks, Ci−L̂i and Li−Ri, are tuned to the same target resonance frequency ωi.

At this frequency, the current-blocking network has an extremely large impedance. All of

the remaining current-blocking networks, tuned to other structural resonance frequencies,

have a low impedance at ωi. A voltage applied at the terminals results in a current that
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Figure 2.6: A dual mode series-parallel shunt circuit [39].

flows freely through the detuned current-blocking networks but is forced to flow through

the active damping network. In this way, the circuit is decoupled so that each damping

network Li −Ri can be tuned individually to a target resonance frequency. As described

above, the series-parallel structure offers no great advantage over comparable techniques.

Benefits arise from a suitable a choice in the arbitrary capacitances Ci. The recommended

capacitance value is 10 − 20 times that of the piezoelectric capacitance. In this case,

the current blocking inductors become significantly smaller than the damping inductors.

When the circuit is simplified by combining the damping and current-blocking inductors

in each series network, the resulting single inductor is a fraction of that required in other

single- or multi-mode circuits.

All of the multi-mode techniques discussed thus far are more or less direct extensions of

the original single-mode circuits. A new approach to the design of passive piezoelectric

shunt damping circuits was presented in [89]. By viewing the electrical impedance as

parameterizing an equivalent collocated strain feedback controller, a shunt impedance

can be found by working backwards from an effective feedback controller. Under certain

conditions, the passivity, and hence stability of the shunted system can be guaranteed [89].

Present controller designs have benefits similar to that of current flowing circuits, they are

low in order, easy to tune, and suitable for modally dense systems.
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Active

Active shunt impedances cannot be realized using passive physical components. Although

passivity, and hence stability is not guaranteed, active shunts are known to provide greater

vibration suppression than passive circuits.

The negative capacitor shunt circuit [125, 10] is a simple technique for broad-band struc-

tural damping. By treating the internal piezoelectric voltage source as a supply, and the

shunt impedance as a load, the traditional concept of maximum power transfer can be

applied. The optimal impedance is equal in magnitude to the source impedance, but op-

posite in phase; hence the negative capacitor. Detrimentally, the optimal impedance is

internally unstable and applies large control voltages from DC to out-of-bandwidth fre-

quencies. An effective technique for stabilizing and toning down the control effort of a

negative capacitor is presented in [10]. Although negative capacitor shunts are somewhat

immune to variation in the structural resonance frequencies, any variation in the trans-

ducer impedance can heavily degrade performance and lead to instability. Under-water

structural and acoustic vibration has been suppressed using a negative capacitance [129].

The final linear shunt technique to be discussed represents a large departure from previous

approaches. Introduced in Chapter 4, the problem of shunt impedance design can be cast

as a standard feedback control problem. Synthesis techniques such as LQG, H2, and H∞

can be employed to design suitable impedances.

2.1.2 Non-linear techniques

In an attempt to eliminate the need for large inductors, a literature has also developed on

the so-called switched shunt or switched stiffness techniques [27]. Three major subclasses

exist where the piezoelectric element is switched into a shunt circuit comprising either:

another capacitor [30], a resistor [23], or an inductor [102]. The required inductance is

typically one tenth that required to implement a simple L − R resonant shunt circuit

designed to damp the same mode. Detrimentally, such techniques are only applicable to

single degree of freedom structures or structures with sinusoidal excitation. Alike virtual
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circuit implementation, an external power source is required for the gate drive and timing

electronics.

2.1.3 Implementation Difficulties

Resonant single- and multi-mode piezoelectric shunt damping circuits consist of a network

of passive inductors, resistors, and capacitors. On first inspection, it may appear that

constructing the circuit is simply a task of assembling the correct component values.

Problems arise when dealing with small piezoelectric capacitances or attempting to damp

low frequency modes. In such cases, inductance values of greater than 1000 Henries may

be required. The largest physical inductance available is approximately 1 Henry. These

components are low-current, low-voltage, and display significant magnetic non-linearity.

Virtual inductors and Riodan gyrators [103] have been employed to implement large in-

ductance values. Such virtual implementations are typically poor representations of ideal

inductors. They are large in size, difficult to tune, and are sensitive to component age,

temperature, and non-ideal characteristics.

Piezoelectric patches are capable of generating hundreds of volts for moderate structural

excitations. This requires the entire circuit be constructed from high-voltage components.

Further voltage limitations arise due to internal virtual circuit gains.

The minimum number of opamps required to implement a piezoelectric shunt damping

circuit increases rapidly with the number of modes to be damped. At least 30 opamps

are required to implement a three mode series configuration multi-mode shunt damping

circuit with current-blocking networks in every branch. In general for this configuration,

2n+4n(n−1) opamps are required to damp n modes. Current-flowing techniques require

a considerably smaller number of opamps, 2n for n modes.

2.2 The Synthetic Impedance

The synthetic impedance is a two terminal device suitable for the implementation of piezo-

electric shunt damping circuits. As shown in Figure 2.7, an arbitrary impedance Z(s) can
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Figure 2.7: An arbitrary terminal impedance Z(s) implemented by impedance

synthesis (a) and admittance synthesis (b).

be established at the terminals by either a) measuring the current iz and applying a voltage

vz, or b) vice-versa.

Referring to the first case shown in Figure 2.7 (a), the applied voltage vz(t) can be deter-

mined by the measured current iz(t), i.e. vz(t) = f(iz(t)). By fixing vz(t) as the output of

a linear transfer function in iz(t), the controlled voltage source can be made to synthesize

an arbitrary impedance Z(s). In the Laplace domain,

Vz(s) = Z(s)Iz(s), (2.1)

where Z(s) is the desired terminal impedance.

Similarly, in the second case shown in Figure 2.7 (b), the applied current iz(t) can be

determined by the measured voltage vz(t), i.e. iz(t) = f(vz(t)). By fixing iz(t) as the

output of a linear transfer function in vz(t), the controlled current source can be made to

synthesize an arbitrary admittance Y (s). In the Laplace domain,

Vz(s) = Y (s)Iz(s), (2.2)

where Y (s) = 1
Z(s) is the desired terminal admittance.

The choice of configuration, either synthetic impedance or synthetic admittance, will de-

pend on the relative order of the desired impedance. As implementation of improper

transfer functions is impractical [64], the choice should be made so that the required

transfer function Z(s) or Y (s) is at least proper [64].
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Y(s)

R c

Figure 2.8: A simple synthetic admittance.

The schematic diagram of a simple synthetic admittance is shown in Figure 2.8. The

shaded area represents a voltage-controlled-current-source (VCCS) with gain 1
Rc

A/V.

The filter Y (s) can be realized either as an analog or digital transfer function.

Synthetic implementation is a unifying replacement for various virtual circuits including:

virtual capacitors and inductors, negative impedance converters, transformers, and gyra-

tors. Only a single high-voltage opamp is required to provide near ideal implementation

of any arbitrary terminal impedance.

2.3 Modeling the Compound System

Consider the piezoelectric laminate structure shown in Figure 2.9. The goal is to suppress

vibration resulting from two disturbances: Va, the voltage applied to a disturbance patch,

and f(r, t), a generally distributed external force.

For generality, we enter the modeling process with knowledge a priori of the system

dynamics. The transfer functions of interest are:

Gva(s) =
Vp(s)
Va(s) Gvv(s) =

Vp(s)
Vz(s) Gda(r, s) =

d(r,s)
Va(s) , (2.3)
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Figure 2.9: A general piezoelectric laminate structure excited by a distributed

force f(r, t), and the voltage Va applied to a disturbance patch. The resulting

vibration d(r, t) is suppressed by the presence of an electrical impedance connected

to the shunt transducer.

where Vp(s) is the piezoelectric voltage induced in the shunt transducer. If the disturbance

and shunt transducer are identical, collocated, and poled in opposite directions, Gva(s) =

−Gvv(s).

The above transfer functions can be derived analytically, for example by solving the Euler-

Bernoulli beam equation [42]. Alternatively, system identification [77] can be employed to

estimate these models directly from experimental data.

Following the modal analysis procedure [85], the resulting transfer functions have the

familiar form

Gda(r, s) =
d(r, s)
Va(s)

=
∞∑
k=1

Fkφk(r)
s2 + 2ζkωks+ ω2

k

, (2.4)

Gvv(s) =
Vp(s)
Vz(s)

=
∞∑
k=1

αk
s2 + 2ζkωks+ ω2

k

, (2.5)

where Fk, and αk represent the lumped modal and piezoelectric constants applicable to

the kth mode of vibration.
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Figure 2.10: The physical and electrically equivalent view of a structure disturbed

by an applied actuator voltage Va(s) and external force f(r, s). The resulting

vibration d(r, s) is suppressed by the presence of a shunt impedance.

2.3.1 Modeling the Presence of a Shunt Circuit

Referring to Figure 2.10, the relationship between voltage and current in the Laplace

domain is

Vz(s) = Iz(s)Z(s). (2.6)

Applying Kirchoff’s voltage law we obtain,

Vz(s) = Vp(s)− 1
Cps

Iz(s), (2.7)

where Cp represents shunt transducer capacitance. Combining (2.6) and (2.7) we obtain,

Vz(s) =
Z(s)

1
Cps

+ Z(s)
Vp(s), (2.8)

or

Vz(s) =
CpsZ(s)

1 + CpsZ(s)
Vp(s). (2.9)

By applying the principle of superposition, the disturbance and shunt voltage strain con-

tributions are,

Vp(s) = Gva(s) Va(s) +Gvv(s)Vz(s). (2.10)
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The shunted composite system can be obtained from Equations (2.6), (2.7), and (2.10),

Vp(s)
Va(s)

=
Gva(s)

1 +Gvv(s)K(s)
. (2.11)

where

K(s) =
−Z(s)

Z(s) + 1
Cps

. (2.12)

The composite displacement transfer function can also be derived in a similar fashion,

d(r, s)
Va(s)

=
Gda(r, s)

1 +Gvv(s)K(s)
. (2.13)

By again applying the principle of superposition, the effect of a generally distributed

disturbance force f(r, s) can be included,

Vp(s) =
1

1 +Gvv(s)K(s)
(Gva(s)Va(s) +Gvf (r, s)f(r, s)) , (2.14)

d(r, s) =
1

1 +Gvv(s)K(s)
(Gda(r, s)Va(s) +Gdf (r, s)f(r, s)) , (2.15)

where Gdf (r, s) and Gvf (r, s) are the respective transfer functions from an applied force

f(r, s) to the displacement d(r, s) and shunt transducer piezoelectric voltage Vp, i.e.

Gvf (r, s) =
Vp(s)
f(r,s) Gdf (r, s) =

d(r,s)
f(r,s)

. (2.16)

From Equation (2.11) it can be concluded that the presence of an electrical shunt impedance

parameterizes an equivalent collocated strain feedback controller. A diagrammatic repre-

sentation of equation (2.11) is shown in Figure 2.11. Further interpretation and analysis

can be found in [89].

2.4 Experimental Application

In this section, the synthetic impedance is employed to damp four modes of a simply

supported beam.
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Figure 2.11: The strain-feedback interpretation of piezoelectric shunt damping.

Figure 2.12: Beam apparatus.

2.4.1 Experimental Setup

The test structure is a uniform aluminum beam with rectangular cross section and ex-

perimentally pinned boundary conditions at both ends. A pair of collocated piezoelectric

patches are attached symmetrically to either side of the structure as shown in Figures 2.12

and 2.13. The transducer placement provides reasonable control authority over the 2nd,

3rd, 4th, and 5th modes. Details of the beam and PIC151 piezoelectric patches are listed

in Tables 2.1 and 2.2.
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Figure 2.13: Experimental apparatus.

Length, L 0.6 m

Width, w 0.025 m

Thickness, h 0.004 m

Young’s modulus, E 65× 109 N/m2

Poisson’s ratio, ν 0.3

Mass / unit area, ρ 10.6 kg/m2

Table 2.1: Parameters of the simply-supported beam.
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Location r-direction, r1 0.050 m

Length, Lp 0.0724 m

Thickness, hp 0.00191 m

Width, wp 0.025 m

Capacitance, Cp 105.77 nF

Young’s modulus, Ep 62× 109 N/m2

Poisson’s ratio, νp 0.3

Strain Constant, d31 −320× 10−12 m/V

Electromechanical coupling, k31 0.44

Stress constant / voltage coefficient, g31 −9.5× 10−3 V m/N

Table 2.2: Physik Instrumente PIC151 piezoelectric parameters.

2.4.2 System Identification

In order to simulate the effect of an attached piezoelectric transducer, a model is required

for the transfer function Gvv(s). The transfer function from an applied actuator voltage

Va(s), to the structural deflection at a point d(r, s) will also be considered. A model with

one input and two outputs is required, Vp(s)

d(r, s)

 = Gp(s) Va(s), (2.17)

where Gp(jω) =

 Gvv(jω)

Gda(r, jω)

 is the open-loop plant transfer function matrix.

Modeling of piezoelectric laminate structures is generally accomplished in the literature

by means of either analytic modeling, finite element analysis, or system identification.

Analytic modeling, typically involving the assumed modes approach [85], requires distinct

models for both structural dynamics and piezoelectric transducers [42]. Detailed informa-

tion regarding the structural and piezoelectric properties is required. Practical application

typically involves the use of experimental data and a non-linear optimization to identify

unknown parameters such as resonance frequencies, piezoelectric coupling coefficients, and

modal amplitudes. Another popular technique is that of finite element (FE) analysis [26].
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This is an approximate method that results in high order spatially discrete models. If

sensor and actuator dynamics are known, an integrated model can be cast in state space

form to facilitate control design [75]. Alike the modal analysis procedure, FE models are

usually tuned using experimental data [35].

System identification can be employed to procure composite structural-piezoelectric mod-

els directly from experimental data. Although the field of system identification is extremely

diverse [77], few techniques are capable of identifying MIMO systems directly without ex-

plicit parameterization of the model or a non-linear optimization. The residue consists

mainly of the so-called subspace class of system identification algorithms. Such methods

identify state space models by exploiting geometric properties of the input and output

sequences. Frequency domain subspace methods have proven extremely effective in iden-

tifying high order resonant systems [83, 82]. In this work, a continuous time frequency

domain subspace algorithm is employed1 [116].

Using a Polytec laser scanning vibrometer (PSV-300) and Hewlett Packard spectrum an-

alyzer (35670A), the frequency responses of Gvv(s) and Gda(r, s) were obtained. The

measured and identified transfer functions are shown in Figure 2.14. In the bandwidth of

interest, the identified model is a good representation of the underlying system.

2.4.3 Damping Performance

A four-mode current-flowing shunt circuit was designed according to the procedure pre-

sented in [12]. The simplified circuit schematic and component values are shown in Figure

2.15 and Table 2.3.

The simulated and experimental shunt-damped frequency responses are shown in Figures

2.16 and 2.17. As listed in Table 2.4, the peak amplitudes of the 2nd, 3rd, 4th and 5th

modes were significantly reduced.

1A Matlab implementation of this algorithm and the algorithm of McKelvey [82] is freely available by

contacting the author.
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Figure 2.14: The measured (- -) and identified (—) magnitude frequency re-

sponse of (a) Gvv(s) and (b) Gda(r = 0.17m, s).
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Figure 2.15: A simplified four-mode current-flowing circuit.
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C1 10 nF L1 480.0 H R1 1423 Ω

C2 10 nF L2 92.6 H R2 1212 Ω

C3 10 nF L3 29.6 H R3 913 Ω

C4 10 nF L4 12.4 H R4 798 Ω

Table 2.3: Component Values.

Mode Number Simulated Damping Experimental Damping

2 14.5 dB 13.5 dB

3 8.2 dB 7.8 dB

4 14.1 dB 13.8 dB

5 16.4 dB 15.8 dB

Table 2.4: Damping performance.

2.5 Conclusions

Many techniques exist for vibration control in smart structures. Resonant piezoelectric

shunt damping circuits provide guaranteed stability, reasonable performance, and are sim-

ple to design. When dealing with low frequency modes or transducers with small capaci-

tance, inductance values of greater than 1000 Henries may be required. Virtual inductors

and gyrators complicate the design, are expensive to construct, and severely limit the

voltage range.

The synthetic impedance has been presented as a simple and practical method for im-

plementation of piezoelectric shunt damping circuits. It can be used as a direct replace-

ment for virtual circuits, negative impedance converters, transformers, and gyrators. The

arbitrary nature of synthetic implementation also permits the implementation of new

impedance designs without physical circuit realizations.

One important issue not raised during the discussion is that of performance robustness.

Resonant shunt damping circuits are known to be highly sensitive to variations in struc-

tural resonance frequency and transducer capacitance [96]. Both of these quantities vary
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Figure 2.16: Simulated frequency response of the open-loop (· · · ) and shunt
damped system (—). The transfer function is measured from an applied actuator

voltage Va(s) to the resulting displacement d(r = 0.17m, s).

substantially with temperature, age, and environmental conditions. By adapting com-

ponent values in real-time, sensitivity to such variations can be reduced. Hollkamp first

demonstrated a single-mode adaptive shunt where a motorized resistor was used to tune

the inductance of a virtual circuit. An additional transducer was required to estimate the

magnitude of vibration. A multi-mode single-transducer adaptive shunt circuit was later

presented in [38]. Using the synthetic impedance, a background DSP task was employed to

estimate and minimize a performance function related to the RMS strain. More recently,

a technique based on relative phase-shift has been proposed that is faster to converge

and displays less misadjustment [96]. This technique also requires a reference such as an

additional transducer or accelerometer
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Figure 2.17: Experimental frequency response of the open-loop (· · · ) and shunt
damped system (—). The transfer function is measured from an applied actuator

voltage Va(s) to the resulting displacement d(r = 0.17m, s).
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Implementation

The difficulty in implementing large inductance values has severely limited the practical

application of piezoelectric shunt damping circuits. In Chapter 2, the synthetic impedance

was introduced as a new technique for realizing arbitrary analog networks. This chapter

is dedicated to the construction and utilization of impedance synthesis devices.

One of the key components required to synthesize a piezoelectric shunt damping circuit is

a controlled current source. The design and application of capacitive-load current drivers

is reviewed in Section 3.1. To alleviate the problems of output voltage drift and poor low

frequency performance, a new class of current and charge amplifiers are proposed.

The second key building block required for analog network synthesis is a signal filter

representing the desired terminal impedance. In Section 3.2, a set of transformations are

presented that link the topology of admittance block diagrams to shunt circuit schematics.

This section is intended for both: practitioners, to simplify the design of analog and digital

signal filters, and for researchers, as an alternative approach to analog network synthesis.

The efficiency of linear amplifiers when driving highly capacitive loads is extremely poor.

In Section 3.3, a switch-mode current source is introduced as an alternative to linear

driving circuits.
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3.1 Compliance Feedback Current / Charge Drivers

One common theme across the diverse literature involving piezoelectric applications is

the problem of hysteresis [3, 60]. When used in an actuating role, piezoelectric trans-

ducers display a significant amount of hysteresis in the transfer function from voltage to

displacement [3, 60].

As discussed in [43] and references therein, a great number of techniques have been de-

veloped with the intention of reducing hysteresis. Included are: displacement feedback

techniques, mathematical Preisach modeling [81] and inversion, phase control, polynomial

approximation, and current or charge actuation [95].

Almost all contributions in this area make reference to the well known advantages of

driving piezoelectric transducers with current or charge rather than voltage [95]. Simply

by regulating the current or charge, a five-fold reduction in the hysteresis can be achieved

[47]. A quote from a recent paper [29] is typical of the sentiment towards this technique:

“While hysteresis in a piezoelectric actuator is reduced if the charge is regulated

instead of the voltage [95], the implementation complexity of this technique

prevents a wide acceptance [65]”.

Although the circuit topology of a charge or current amplifier is much the same as a

simple voltage feedback amplifier, the uncontrolled nature of the output voltage typically

results in the load capacitor being charged up. Saturation and distortion occur when the

output voltage, referred to as the compliance voltage, reaches the power supply rails. The

stated complexity invariably refers to the need for additional circuitry to avoid charging

of the load capacitor. A popular technique [80, 25], is to simply short circuit the load

every 400 ms or so, periodically discharging the load capacitance and returning the DC

compliance voltage to ground. This introduces undesirable high frequency disturbance

and severely distorts low frequency charge signals.
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3.1.1 Basic Circuit Configurations

This section introduces a new type of current and charge amplifier capable of providing

high accuracy, ultra-low frequency regulation of current or charge. The compliance feed-

back current or charge amplifier contains an additional output voltage feedback loop that

effectively estimates and rejects all sources of DC offset. This technique is intended as a

viable alternative for previously presented current and charge amplifiers. In the following

sub-sections, a full analysis is provided to clarify the problem and illustrate the simplicity

of the solution.

Consider the simplified diagram of a generic current source [58] shown in Figure 3.1. The

high gain feedback loop and voltage driver works to equate the applied reference voltage

vref , to the sensing voltage vs. In the Laplace domain, at frequencies well within the

bandwidth of the control loop, the load current IL(s) is equal to Vref (s)/Zs(s).

If Zs(s) is a resistor Rs,

IL(s) = Vref (s)/Rs, (3.1)

i.e. we have a current amplifier with gain 1/Rs A/V .

If Zs(s) is a capacitor Cs,

q̇L = IL(s) = Vref (s)Css, (3.2)

qL = Vref (s)Cs, (3.3)

i.e. we have a charge amplifier with gain Cs Columbs/V .

As mentioned in the introduction, the foremost difficulty in employing such devices to

drive highly capacitive loads is that of DC current or charge offsets. Inevitably, the

voltage measured across the sensing impedance will contain a non-zero voltage offset, this

and other sources of voltage or current offset within the circuit result in a net output

current or charge offset. As a capacitor integrates DC current, the uncontrolled output

voltage will ramp upward and saturate at the power supply rail. Any offset in vo limits the

compliance range of the current source and may eventually cause saturation. To limit the
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Figure 3.1: Generic current source.

DC impedance of the load, a parallel resistance is often used. With the parallel connection

of 1
CLs

and RL, the actual current ILc(s) flowing through the capacitor is

ILc(s) = IL(s)
s

s+ 1
RLCL

. (3.4)

Additional dynamics have been added to the current source. The transfer function now

contains a high-pass filter with cutoff ωc = 1
RLCL

. That is,

ILc(s)
Vref (s)

=
1
Rs

s

s+ 1
RLCL

. (3.5)

In contrast to the infinite DC impedance of a purely capacitive load, the load impedance

now flattens out towards DC at ωc = 1
RLCL

, and has a DC impedance of RL. Thus,

a DC offset current of idc results in a compliance voltage offset of vdc = idcRL. In a

typical piezoelectric driving scenario, with CL = 100 ηF , and idc = 1µA, a 1 MΩ parallel

resistance is required to limit the DC compliance offset to 1 V . The frequency response

from an applied reference voltage to the actual capacitive load current ILc(s) is shown

in Figure 3.2. Phase lead exceeds 5 degrees below 18 Hz. Such poor low frequency

performance precludes the use of current amplifiers in applications requiring accurate low

frequency tracking, e.g. Atomic Force Microscopy [28]. The advantages of piezoelectric

current excitation are lost to the practical electronic difficulties in constructing a current

source.

The following section introduces a new type of current source. The compliance feedback

current amplifier compensates for any DC compliance offset without the addition of a

parallel resistance. Low frequency bandwidths in the milli-Hertz range can be achieved

with basic components.
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Figure 3.2: Typical frequency response from an applied reference voltage to the

actual capacitive load current ILc(s).

3.1.2 Analysis of Compliance Feedback Current and Charge amplifiers

The aim of this sub-section is to introduce a generalized compliance feedback current or

charge amplifier. From the general description of its operation, we introduce a class of

controllers that achieve excellent ultra-low frequency tracking and complete rejection of

DC compliance voltages.

Figure 3.3 shows the schematic diagram of a compliance feedback current source. Ne-

glecting the input associated with the compliance controller C(s), the circuit is simply

a realization of the diagram shown in Figure 3.1. The inverted1 reference voltage vref ,

is maintained across the sensing impedance Zs(s) by the high gain feedback loop. Thus,

IL(s) = −Vref (s)/Zs(s). The voltage drive circuit, represented by an opamp, is the only

required high voltage component vo = K(v+ − v−), where K is the internal open-loop

gain.

The additional input vbias in the compliance feedback loop is included to allow for a non-

zero compliance reference voltage. When a voltage is applied to vbias , rather than regulat-

ing the DC compliance voltage to zero, the DC compliance voltage is regulated to vbias . In

cases where the operational voltage range of the piezoelectric transducer is non-symmetric,

1The inversion of vref is performed purely for convenience when implementing shunt damping circuits.

The current is usually defined flowing into the current source.
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Figure 3.3: Simplified schematic of a compliance feedback current amplifier.

for example, a stack actuator, the application of a DC bias voltage electrically pre-stresses

the actuator to allow bi-polar operation. Because we are now controlling both the current

and voltage in different frequency regions, dynamic bi-polar charge and current signals

can be tracked together with a desired DC electrical pre-stressing voltage. For purely

capacitive loads, DC electrical pre-stressing requires no additional power.

For high power, or ultra-efficient current and charge amplifiers, the output driver stage

can be replaced with a pulse width modulated DC-AC inverter [19, 87]. The time delay

inherent in switching amplifiers, now enclosed in the current or charge feedback loop will

limit the high frequency bandwidth of the amplifier. Aside from the addition of switching

noise and current ripple, the following linear results also apply.

The voltages and currents of interest are related in the system block diagram shown

in Figure 3.4. The auxiliary signal vp models a load internal voltage source, e.g. the

piezoelectric voltage. By definition, the polarity of the source hinders the current iL.

To control the amplifier, there are two objectives. The first is to ensure good reference

tracking of the current or charge signals. The second is to provide low frequency and

DC regulation of the compliance voltage vo. Obviously both goals cannot be achieved
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Figure 3.4: System block diagram of the circuit shown in Figure 3.3.

independently. To understand the trade-off between tracking performance and compliance

regulation, two transfer functions are studied: 1) the transfer function from an applied

reference voltage Vref (s) to the voltage measured across the sensing impedance Vs(s), and

2) the transfer function from an applied reference voltage Vref (s) to the compliance voltage

Vo(s). Respectively, the first transfer function represents the tracking performance, while

the second represents the charge or current offset rejection. As the most significant source

of output voltage offset is usually DC error in the reference signal, input charge and current

offset rejection is studied as opposed to an output disturbance.

In some circumstances, for example, scanning applications where absolute tracking accu-

racy is required for a short time, it may be beneficial to temporarily hold the output of

the compliance controller static. During this time, the charge and current tracking will be

perfect but the output voltage may drift from the reference point. To re-tune the circuit

between scans, the compliance controller is simply re-activated and allowed to settle.

For a current source connected to a capacitive load, Zs(s) = Rs and ZL(s) = 1
CLs

, assuming

Vp(s) = 0,

Vs(s)
Vref (s)

=
−KRsCLs

(1 +KC(s)) (RsCLs+ 1) +KRsCLs
(3.6)

Vo(s)
Vref (s)

=
−KRsCLs−K

(1 +KC(s)) (RsCLs+ 1) +KRsCLs
. (3.7)
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The effect of three compliance controllers is discussed below. Figures 3.5, 3.6, and 3.7

compare the responses of each control strategy, proportional, integral, and PI. To be

fair, numerical values are selected so that each strategy has a comparable low frequency

tracking performance.

(a) Our first choice of controller is simply a proportional controller C(s) = c. The effect

on the transfer functions Vs(s)
Vref (s) and

Vo(s)
Vref (s) is shown in Figures 3.5 (a), and 3.6 (a). The

transient response of the compliance voltage to a step in DC offset current is shown in

Figure 3.7 (a). Analogous to the effect of adding a parallel resistor, the transfer function
Vo(s)
Vref (s) flattens out towards DC, thus limiting the integration of offset currents. As shown

in Figure 3.7 (a), any offset current results in a large compliance offset. Beneficially the

voltage across the sensing resistance is still proportional to the load current, i.e. even

though the dynamic response is no better than a simple resistor, we are now able to

measure the load current even outside the bandwidth of the amplifier.

(b) To eliminate DC compliance offset, the next obvious choice is an integral control

strategy C(s) = α
s . Referring to figures 3.5, 3.6, and 3.7 (b), the DC compliance offset is

completely rejected but a lightly damped low frequency resonance has been introduced.

As demonstrated in Figure 3.7 (b), the result is an extremely poor settling time.

(c) Proportional-integral (PI) control C(s) = αs+δ
s achieves complete rejection of offset

currents while exhibiting a fast settling time in the transient response. Using the variables

α, δ, and Rs, an arbitrary low frequency bandwidth can be obtained with full control over

the system damping. Figures 3.5, 3.6, and 3.7 (c), show a superior performance in all of

the qualifying responses. A PI controller is easily implemented using the simple opamp

circuit shown in Figure 3.8. The corresponding transfer function is

Vout(s)
Vin(s)

=
1

C2R1
+ R2
R1

s

s
. (3.8)

For a charge amplifier connected to a capacitive load, Zs(s) = 1
Css

and ZL(s) = 1
CLs

, we

may write,

Vs(s)
Vref (s)

=
−KCL

(1 +KC(s)) (CL + Cs) +KCL
(3.9)
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Figure 3.5: The current tracking performance Vs(s)
Vref (s) of a current source with

capacitive load and compliance controller (a) Proportional (b) Integral (c) PI.

Vo(s)
Vref (s)

=
−KCL −KCs

(1 +KC(s)) (CL + Cs) +KCL
. (3.10)

The compliance controller design for charge amplifiers is considerably easier. Simple inte-

gral control (C(s) = α
s ) results in a first order response with complete regulation of DC

offsets,

Vo(s)
Vref (s)

=
−KCLs−KCss

(KCL + CL + Cs)s+Kα(CL + Cs)
. (3.11)

The location of the closed loop pole is easily manipulated by the variable α.

Note that charge amplifiers are actually susceptible to DC offsets in two of the circuit

node-voltages: 1) the output compliance voltage vo, and 2) the sensing voltage vs. Offset

in the sensing voltage results from input bias currents generated by the driving opamp.

By choosing an opamp with low input bias current, for example an opamp with JFET

input transistors 2, the problem can be solved by placing a large shunt resistor in parallel.

Although this introduces additional dynamics, the low frequency cutoff in the sensing

voltage measurement would typically be two orders of magnitude lower than that of the

compliance regulation loop. The additional dynamics can be safely neglected.
2Junction Field Effect Transistors (JFETs) are commonly used in the input stages of high voltage

opamps.
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Figure 3.6: The compliance regulation performance Vo(s)
Vref (s) of a current source

with capacitive load and compliance controller (a) Proportional (b) Integral (c) PI.

3.1.3 Experimental Results

Experimental results are presented for the prototype amplifier shown in Figure 3.9. This

device supports much of the research presented in upcoming chapters. Features include:

• Maximum supply voltage of +/- 250 Volts.

• Peak output current of 32 Amps.

• On-board low voltage instrumentation supply.

• Reconfigurable to drive current, charge, voltage, or current rate-of-change.

• Variable bandwidth up to 150 kHz (when driving a 100 nF PZT load).

• Highly linear and low-cost discrete BJT components.

• Fully protected, high bandwidth, ultra-high impedance instrumentation of the ter-

minal voltage, compliance voltage, current, charge, and current rate-of-change.

• Capable of accepting impedance cards (as discussed in Section 3.2.2).
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Figure 3.7: The transient response of the compliance voltage Vs(s) to a step in

DC offset current. (a) Proportional (b) Integral (c) PI.
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Figure 3.8: Opamp implementation of an inverting PI controller.

To illustrate the operation of the current amplifier, a 1 µF capacitor is driven at low

frequencies with a current sensing resistor of 220 kΩ. With C(s) = 0.004s+0.00016
s , the

simulated compliance and tracking frequency responses are shown in Figures 3.10 and

3.11. The transient response to a step change in input current reference offset is shown

in Figure 3.13. A 100 mHz signal is applied to examine the low frequency tracking

performance, reference and measured currents are shown in Figure 3.12.

Similar experiments were carried out for a charge amplifier. Using a sensor capacitance of

10 µF , the compliance controller C(s) = 0.001
s provides the desired response. Analogous

frequency and time domain results are presented in Figures 3.14, 3.15, 3.16, and 3.17.
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Figure 3.9: Photograph of a prototype current / charge amplifier.
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Figure 3.10: Simulated compliance frequency response Vo(s)
Vref (s) of the prototype

current source.



3.1 Compliance Feedback Current / Charge Drivers 49

10
−4

10
−2

10
0

10
2

−60

−40

−20

0

dB

10
−4

10
−2

10
0

10
2

−200

−150

−100

−50

0

θ

f (Hz)

Figure 3.11: Simulated tracking frequency response Vs(s)
Vref (s) of the prototype

current source.
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Figure 3.12: Reference (–) and measured current (- -).
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Figure 3.13: Simulated (–) and measured (- -) compliance response to a step

change in current offset.
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Figure 3.14: Simulated compliance frequency response Vo(s)
Vref (s) of the prototype

charge amplifier.
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Figure 3.15: Simulated tracking response Vs(s)
Vref (s) of the prototype charge ampli-

fier.
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Figure 3.16: Reference (–) and measured charge (- -).
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Figure 3.17: Simulated (–) and measured (- -) compliance response to a step

change in reference offset.
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3.2 Implementation of Admittance/Impedance Transfer Func-

tions

Referring to Figure 3.18, the terminal impedance of an arbitrary electrical network ZT (s)

can be implemented by either: (a) measuring the terminal current iz and controlling the

terminal voltage vz, or (b) measuring the terminal voltage vz and controlling the terminal

current iz. The motivation and benefits behind such techniques are thoroughly discussed

in Chapter 2.

The choice of configuration, either synthetic impedance or admittance, will depend on the

relative order of the desired impedance. As implementation of improper transfer functions

is impractical [64], the choice should be made such that the required transfer function

Z(s) or Y (s) is at least proper [64].

i z 

 

v  z 
vz  +

 

i  z 

 

v  z 

i  z  

(a) (b) (c)

Figure 3.18: An arbitrary terminal impedance (a), a synthetic impedance (b),

and a synthetic admittance (c).

3.2.1 Block Diagram Transformations

As discussed above, to synthesize an electrical network, a filter is required with the same

transfer function as the impedance or admittance of that circuit. When using a DSP

system, the filter can be implemented simply by calculating the electrical impedance and

implementing that transfer function directly. This task may become tedious or compli-

cated if the electrical circuit contains a large number of components. A ‘current blocking’

piezoelectric shunt circuit [124] may contain up to 18 individual components in a 3 mode
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circuit. The admittance transfer function would contain 15 states and be parameterized

in up to 18 variables.

Analog implementation adds further difficulty. Traditional filter synthesis techniques [114]

typically require a partial fraction decomposition, followed by the implementation of each

second order section.

Neither direct analog nor digital implementation is particularly straight-forward for com-

plicated impedance structures. For second order transfer functions and above, the resulting

digital or analog filter can be difficult to tune.

To simplify the process of impedance or admittance transfer function implementation,

this section introduces a link between the topology of system block diagrams and circuit

schematics. In the digital case, if a graphical compilation package such as the real time

workshop for Matlab or similar is available, no impedance calculation from the circuit

diagram is required at all. The resulting block diagram bears a natural resemblance to its

corresponding circuit, is clearly parameterized, and is consequently easy to tune. In the

analog case, the circuit can be broken down into a number of simple opamp integrators

and amplifiers whose gains correspond directly to component values. The resulting filter

circuit is practical, easy to implement, expandable, and simple to tune.

Following are the transformations of interest for both the impedance and admittance

synthesis cases. In Section 3.2.2, two examples are presented to clarify the application.

Impedance Synthesis

Parallel equivalence. Consider the parallel network components Z1, Z2, . . . , Zm as

shown in Figure 3.19. The terminal impedance and admittance corresponding to this

network is:

ZT (s) = 1
1

Z1
+ 1

Z2
+...+ 1

Zm

YT (s) = 1
Z1

+ 1
Z2

+ . . .+ 1
Zm

. (3.12)
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Figure 3.19: Parallel equivalence for impedance block diagrams.

Now consider the transfer function block diagram, also shown in Figure 3.19,

G(s) = T (s)
R(s) = Z1

1+Z1
1

Z2
+...+Z1

1
Zm

= 1
1

Z1
+ 1

Z2
+...+ 1

Zm

.
(3.13)

Observe that YT (s) and G(s) as described in equations (3.12) and (3.13) are identical.

Therefore, if a synthetic impedance as shown in Figure 3.18 (b) is implemented with a

transfer function equal to G(s), the impedance seen from the terminals is identical to the

impedance of the parallel network shown in Figure 3.19 (with impedance ZT (s) given by

(3.12)).

Series equivalence. Consider the series network components Z1, Z2, . . . , Zm as shown

in Figure 3.20. The terminal impedance and admittance of this network are:

ZT (s) = Z1 + Z2 + . . .+ Zm YT (s) = 1
Z1+Z2+...+Zm

. (3.14)

Now consider the transfer function block diagram, also shown in Figure 3.20,

G(s) =
T (s)
R(s)

= Z1 + Z2 + . . .+ Zm. (3.15)

Observe that YT (s) and G(s) as described in equations (3.14) and (3.15) are identical.

Therefore, if a synthetic impedance as shown in Figure 3.18 (b) is implemented with a
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Figure 3.20: Series equivalence for impedance block diagrams.

transfer function equal to G(s), the impedance seen from the terminals will be identical

to the impedance of the series network shown in Figure 3.20 (with impedance ZT (s) given

by (3.14)).

Admittance Synthesis

Parallel equivalence. Consider the parallel network components Z1, Z2, . . . , Zm as

shown in Figure 3.21. The terminal impedance and admittance of this network is

ZT (s) = ( 1
Z1

+ 1
Z2

+ . . .+ 1
Zm

)−1 YT (s) = 1
Z1

+ 1
Z2

+ . . .+ 1
Zm

. (3.16)

Now consider the transfer function block diagram, also shown in Figure 3.21.

G(s) =
T (s)
R(s)

=
1
Z1

+
1
Z2

+ . . .+
1
Zm

. (3.17)

Observe that YT (s) and G(s), as described in equations (3.16) and (3.17) are identical.

Therefore, if a synthetic impedance as shown in Figure 3.18 (c) is implemented with a

transfer function equal to G(s), the impedance seen from the terminals is identical to the

impedance of the parallel network shown in Figure 3.21 (with impedance ZT (s) given by

(3.16)).
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Figure 3.21: Parallel equivalence for admittance block diagrams.

Series equivalence. Consider the series network components Z1, Z2, . . . , Zm as shown

in Figure 3.22. The terminal impedance and admittance of this network is:

ZT (s) = Z1 + Z2 + . . .+ Zm YT (s) = 1
Z1+Z2+...+Zm

. (3.18)

Now consider the transfer function block diagram, also shown in Figure 3.22,

G(s) = T (s)
R(s) =

1
Z1

1+ 1
Z1
Z2+...+

1
Z1
Zm

= 1
Z1+Z2+...+Zm

.

(3.19)

Observe that YT (s) and G(s) as described in equations (3.18) and (3.19) are identical.

Therefore, if a synthetic impedance as shown in Figure 3.18 (c) is implemented with a

transfer function equal to G(s), the impedance seen from the terminals is identical to the

impedance of the series network shown in Figure 3.22 (with impedance ZT (s) given by

(3.18)).

3.2.2 Examples

Digital Synthesis

Consider the current blocking circuit [124] shown in Figure 3.23. The corresponding admit-

tance block diagram is shown in Figure 3.24. Each subsystem can be further decomposed

or implemented by parameterized state space system, both methods facilitate simplified

online tuning.
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C3 L 3

R2

L 2

R1

L 1

Figure 3.23: Current blocking shunt circuit.

Analog Synthesis

Current flowing shunt circuits have recently been introduced [12]. The shunt circuit is

simple and increases in order only linearly as the number of modes to be shunt damped

simultaneously increases.

To implement the admittance of a current flowing shunt circuit, a filter that represents a

single circuit branch is required. The output of each branch filter can then be summed to

produce a filter representing the entire multi-mode circuit.
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Figure 3.24: Admittance transfer function block diagram of a current flowing

shunt circuit.
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Figure 3.25: Current flowing shunt circuit.

One may first consider the traditional filter synthesis techniques of state-variable or Sallen-

Key [114]. Such techniques result in a circuit whose component values are a complicated

function of the original shunt components, severely impeding any attempt at online tuning.

Alternatively, using the transformations presented in this section, each admittance branch

can be implemented first as a system block diagram, then as an analog circuit containing

only summers, integrators, and gains.

The admittance block diagram of a single mode current flowing shunt circuit is shown in

Figure 3.26. A simple but effective analog implementation is shown in Figure 3.27. The

transfer function is easily found to be,

Vout(s)
Vin(s)

=
1

R1C1s+ R2
R3

+ 1
R4C4s

. (3.20)
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1
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Figure 3.26: A single current flowing branch admittance block diagram.

The filter components are related to the original shunt circuit branch by,

L = R1C1 (3.21)

R =
R2

R3

C = R4C4.

Although there are more opamps than would normally be required, the transfer function

is explicitly parameterized in terms of the parent circuit. The resistors R1, R2, and R4 can

be varied independently to tune the shunt circuit inductance, resistance, and capacitance.

A practical implementation is shown in Figure 3.28. For flexibility, the filter is manufac-

tured as a small board that can be installed or removed as necessary. The pictured current

source has a maximum supply voltage of +/- 45 Volts, includes an on-board low voltage

supply, and can hold up to two impedance cards.

The high voltage amplifier presented in Section 3.1.3 is also capable of accepting impedance

cards. This technology represents a considerable increase in the practicality and simplicity

of piezoelectric shunt damping systems.
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Figure 3.27: Analog implementation of the block diagram shown in Figure 3.26.

Figure 3.28: An opamp based current source with impedance card mounted

vertically.
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3.3 Switch-Mode Implementation

This section introduces an alternative method for implementation of piezoelectric and

electromagnetic shunt damping circuits. The switch-mode synthetic admittance requires

no high voltage linear components, is small in size, and is ideal for high-power or industrial

scale applications. Switch-mode devices are capable of recycling reactive power and offer

much higher operating efficiencies than comparable linear techniques.

3.3.1 Device Operation

A simplified circuit diagram of the switch-mode synthetic admittance is shown in Figure

3.29. The basic operation is much the same as that discussed previously, the device

maintains an arbitrary relationship between the measured terminal voltage and applied

current, i.e. between iT and vT .

We begin with some preliminary circuit analysis. In the Laplace domain,

IT (s) =
VT (s)− Vpwm(s)

Zc(s)
. (3.22)

In this case, the desired relationship between terminal voltage and current is the impedance

ZT (s),

IT (s) =
1

ZT (s)
VT (s). (3.23)

Combining (3.22) and (3.23) yields the relationship required to maintain (3.23) at the

terminals,

Vpwm(s) = VT (s)
(
1− Zc(s)

ZT (s)

)
. (3.24)

The reader may recognize the similarity between the circuit on the right hand side of

Figure 3.29 and a controlled single phase switch-mode rectifier, or a four quadrant switch-

mode amplifier. Indeed the only difference between such devices is the selection of control

impedance and bridge control algorithm. Although we can not synthesize vpwm(t) exactly,

we can do so in the average sense. The relationship between the reference signal and the

control duty cycle is

D =
1
2

(
vref
Vdc

+ 1
)
. (3.25)
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Figure 3.29: The switched mode synthetic admittance.

Boost Configuration

In this sub-section we consider a specific choice for the control impedance Zc, a series

inductor and resistor. In this configuration, the structure of the circuit resembles that

of a single phase boost rectifier. The primary motivation is to allow the flow of real and

reactive power back to the source.

Assuming that the inductance is large enough to maintain an approximately constant

current over the switching interval, when the applied potential vpwm opposes the current

iT , the inductor overcomes the source potential and forces the current to flow through the

anti-parallel diodes back to the source.

This configuration also has the advantage of greatly reducing the high frequency content

applied to the piezoelectric transducer. The inherent capacitance of the PZT together

with the control impedance creates a second order low pass power filter,

VT (s) =
1

LcCp

s2 + Rc
Lc

s+ 1
LcCp

Vpwm(s). (3.26)

For reasonable values of Rc, Lc, and Cp (300 Ω, 0.1 H, 400 ηF ), the filter has a cutoff

frequency of around 800 Hz. If we consider a system with a switching frequency of 8 kHz,

such a filter would attenuate the fundamental switching component by 40 dB. Taking into



64 3. Implementation

account the additional low pass dynamics of the plant, the actual realized disturbance due

to switching is negligible.

3.3.2 Efficiency

If we consider a sinusoidal voltage source Vs connected to an impedance ZT , the real

dissipated power is

PT =
1
2
|Vs|2Re

{
1
ZT

}
=

1
2

∣∣∣∣ VsZT

∣∣∣∣2Re {ZT } . (3.27)

We define the efficiency of a switch-mode synthetic admittance as the ratio of power

absorbed by Vdc, to the power that would normally be dissipated if the impedance ZT was

implemented using ideal physical components, i.e.

η(Zc, ZT , ω) = 100%× PVdc

PT
. (3.28)

By this definition, virtual or linear synthetic implementations will always result in a neg-

ative efficiency, i.e. they absorb no real power. In fact, the situation is worse, such

implementations must actually supply power to synthesize the flow of apparent power.

For our application, i.e. synthesizing inductors to form a highly resonant circuit, the

realized efficiency is extremely poor (large and negative).

The quantity PVdc
is easily found by performing a power balance. Obviously, the real

power as seen from the terminals will be equal to PT . The only remaining contribution to

the net real power flow is that dissipated by the control impedance,

Pc =
1
2

∣∣∣∣ VsZT

∣∣∣∣2Re {Zc} (3.29)

η(Zc, ZT , jω) = 100%× PT − Pc
PT

(3.30)

= 100%×
[
1− Re {Zc}

Re {ZT }
]
. (3.31)

The best efficiency (100%) is achieved if the control impedance contains no real component.

If the control impedance has a larger real component than the terminal impedance, the

efficiency is negative, i.e. the source Vdc must supply real power to the system.
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3.3.3 Practical Advantages and Considerations

The switch-mode synthetic admittance has a number of advantages over its linear coun-

terpart. Some difficulties also arise that are not present in the linear case.

• Cost. Discrete power switches can be obtained for a fraction of the cost of HV linear

components.

• Size / Density. The switching circuit shown in Figure 3.29 does not dissipate any

real or reactive power flowing between the source and the controlling impedance.

There is also no requirement for quiescent or bias current. Coupled with the small

physical size of power switches, a low heat dissipation allows the circuit to be manu-

factured in an extremely small enclosure. Another significant factor is the size of the

power supply. In the linear case, a large supply is required to power the components

and to supply reactive power to the structure. As we have seen, in the switching

case, not only is the power supply small, but if the synthesized terminal impedance

has a larger real component than the controlling impedance, no power supply is

required at all.

• Control Conditioning. The switch-mode synthetic admittance manipulates the

terminal current by controlling the average voltage across a control impedance Zc.

In practice, the circuit must be conditioned so that the expected current range re-

sults in realizable voltage differences across the control impedance. At a specific

frequency, this is easily achieved by ensuring |Zc(s)| >> |ZT (s)|, i.e. by choosing

a control impedance much greater in magnitude than ZT (s). Another simple tech-

nique is to design Zc(s) having an opposite or significantly different phase angle with

respect to ZT (s). In the boost configuration, we are limited in choice to an inductor

and resistor.

The impedance of passive shunt damping circuits is typically comprised of inductive

resistive branches. In the active frequency range, the reactance of each branch is

heavily dominated by the inductor, this is expected as resonant circuits operate at

very low power factors (implying small real impedance).
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We must consider a number of factors: For efficiency we wish to keep the control re-

sistance Rc small. If Rc is small, the only way to increase the control impedance, is to

increase the size of the inductance Lc. As both the control and terminal impedance

have a similar impedance angle (approximately +π), we cannot improve the control

conditioning by relying on a phase difference. Thus, to obtain a well conditioned

voltage drop across the control impedance ZT , the control inductance must be a

reasonable fraction of the terminal inductance. e.g. Lc = LT
10 . Multi-mode shunt

circuits include at least one inductance per branch, in this case, we must consider

the lowest frequency branch, (the branch with the greatest inductance).

• Common Mode Instrumentation Performance. The return terminals of the

load PZT and supply Vdc must be electrically isolated. Ideally, the acquisition of vT

should be performed using a circuit completely isolated from both references. As this

is impossible in practice, the instrumentation amplifier must have a high common

mode rejection ratio to attenuate components resulting from the varying potential

between the two references.

3.3.4 Power Harvesting

The switch-mode synthetic admittance is capable of absorbing energy from an electrical

source. When the efficiency (3.31) is positive, and the device is being used to implement

some network containing a finite resistance, the net real power flow into the DC source is

also positive.

According to [38], the damped system transfer function from an applied actuator voltage

to the measured output Vz is

Gv
Z
v =

Vz(s)
Va(s)

=
K(s)Gvv(s)

1 +K(s)Gvv(s)
, (3.32)

where K(s) is defined in Chapter 2 as

K(s) =
Z(s)

Z(s) + 1
CT s

. (3.33)
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Given the terminal voltage (3.32), and the operating efficiency (3.31), we can quantify the

harvested real power. At a specific frequency, the real power dissipated by the terminal

impedance is

PT (jω) =
1
2
|VZ(jω)|2Re

{
1

ZT (jω)

}
, (3.34)

thus,

PVdc
(jω) = η

1
2

∣∣∣∣ Vz(jω)ZT (jω)

∣∣∣∣2Re {ZT (jω)} (3.35)

=
1
2

∣∣∣∣ Vz(jω)ZT (jω)

∣∣∣∣2 [Re {ZT (jω)− Zc(jω)}] ,

where Vz(s) = Gv
Z
v(s)Va(s), and η denotes η(Zc, ZT , jω).

3.3.5 Experimental Results

The switch-mode synthetic admittance was employed to implement a dual-mode current-

blocking piezoelectric shunt damping circuit. In theory, the circuit is capable of harvesting

power from the structure. To date, practical difficulties have avoided such operation.

The problems with power harvesting are due mainly to the highly reactive nature of

piezoelectric shunt damping circuits. In the frequency range of interest, the impedance

of a typical shunt circuit results in a net power flow that is 90-99 % reactive. Thus,

to harvest power, the device must efficiently recycle reactive power and absorb only the

minute amount of real power normally dissipated by the resistance. In practice, losses due

to switching, imperfect boost inductors, and other parasitic effects have prevented such

ideal operation.

Experimental Setup

The experimental beam apparatus, pictured in Figure 3.30, is a uniform aluminum bar with

rectangular cross section and experimentally pinned boundary conditions at both ends.

A pair of piezoelectric ceramic patches (PIC151) are attached symmetrically to either

side of the beam surface. One patch is used as an actuator and the other as a shunting
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Figure 3.30: The experimental beam.

layer. Physical parameters of the experimental beam and piezoelectric transducers are

summarized in Tables 3.1 and 3.2. Note that the transducer location offers little control

authority over the first mode. In this work, the structures second and third modes are

targeted for reduction.

A prototype switch-mode admittance is shown in Figure 3.31. The board contains two

isolated sub-circuits, the gate-drive and MOSFET bridge on the left, and the ground

referenced instrumentation on the right. The MOSFET devices used in this circuit permit

Length, L 0.6 m

Width, wb 0.05 m

Thickness, hb 0.003 m

Youngs Modulus, Eb 65× 109 N/m2

Density, ρ 2650 kg/m2

Table 3.1: Experimental Beam Parameters.
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Length 0.070 m

Charge Constant, d31 −210× 10−12 m/V

Voltage Constant, g31 −11.5× 10−3 V m/N

Coupling Coefficient, k31 0.340

Capacitance, Cp 0.105 µF

Width, ws wa 0.025 m

Thickness, hs ha 0.25× 10−3 m

Youngs Modulus, Es Ea 63× 109 N/m2

Table 3.2: Piezoelectric Transducer Properties.

Figure 3.31: A switch-mode synthetic admittance connected to the experimental

beam and dSpace signal processor.
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R1 1543 Ω L1 43 H

R2 1145 Ω L2 20.9 H

C3 100 nF L3 45.2 H

Table 3.3: Component values.

a peak-to-peak output voltage of 120 V at 2 Amps.

The displacement and voltage frequency responses are measured using a Polytec scanning

laser vibrometer (PSV-300) and HP spectrum analyzer (35670A).

Damping Performance

In reference [37], a current-blocking piezoelectric shunt damping circuit is designed to

minimize the H2 norm of the beam described in Section 3.3.5. The circuit schematic and

component values can be found in Figure 2.15 and Table 3.3.

Using a control impedance of 67 mH + 33 kΩ, the switch-mode admittance was used to

implement the shunt circuit. The experimental open- and closed-loop transfer functions

from an applied actuator voltage to the resulting displacement at a pointGyv(r = 0.17m, s)

are shown in Figure 3.32. The amplitudes of the second and third mode are reduced by

21.6 and 21.3 dB respectively.

To assess the linearity of switch-mode implementation, a sine wave was applied at the

second mode resonance frequency, the power spectral density of the resulting voltage

applied to the piezoelectric transducer is shown in Figure 3.33. The harmonic content and

switching noise applied to the piezoelectric transducer is negligible (< 60 dB).

3.4 Conclusions

A new class of current and charge amplifier has been introduced. By feeding back the

amplifier’s compliance voltage, the effect of DC circuit offsets can be eliminated. Exper-

imental results show excellent low frequency current and charge tracking and complete
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Figure 3.32: Experimental open-loop (- -) and damped system transfer (—)

functions.

rejection of DC offsets. A prototype compliance feedback amplifier connected to a purely

capacitive load is shown to accurately realize low frequency current and charge signals.

One application for capacitive-load current sources is in the field of shunt damping. To

avoid implementing impractically large inductors or non-ideal virtual circuits, the syn-

thetic admittance can be employed to implement an ideal electrical network. Block di-

agram transformations have been presented to simplify the design of analog or digital

signal processing algorithms. In the previous chapter, the prototype current amplifier

and presented block diagram transformations were applied to damp 4 modes of a simply

supported beam.

The switch-mode synthetic admittance has been presented as a low cost, high power,

and extremely efficient alternative to linear implementation. The combination of the

load and the control impedance act as a low-pass power filter. This allows highly linear

synthesis of the voltage Vz applied to a piezoelectric transducer with negligible harmonic or

switching components. Two modes of a simply supported beam were successfully reduced

in amplitude by 21.6 and 21.3 dB. Although ideally, the device is capable of harvesting

power when implementing a circuit with non-zero resistance, the difficulties involved when

attempting to synthesize a highly reactive impedance preclude such operation.
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Figure 3.33: Power spectral density of the terminal voltage Vz applied to the

piezoelectric transducer.



4

Active Piezoelectric Shunt

Control

In Chapter 2, a technique was presented for the implementation of piezoelectric shunt

damping circuits. Through the use of a controlled current source and voltage measurement,

or vice versa, an arbitrary impedance can be presented to the terminals of a piezoelectric

transducer. In this chapter, the arbitrary nature of such implementation will be exploited

to synthesize new possibly-multivariable, possibly-active piezoelectric shunt impedances.

A simple modeling framework is introduced that lends the problem to such synthesis

techniques as LQR, LQG, H∞, and H2. Previous problems including the ad-hoc nature

of shunt circuit tuning, limited performance, and the strong dependence on structural

resonance frequencies are significantly alleviated.

4.1 Introduction

As shown in Figure 4.1, an electrical impedance Z(s) can be synthesized with the use of

a controlled voltage source, charge measurement, and signal filter. The electric charge

q(t), measured in Coulombs (C), is simply the time integral of current. When dealing

with capacitive loads, measuring or controlling the charge is convenient as the associated

terminal voltage is related proportionally. In contrast, current is related to the terminal

voltage through a derivative. If measuring the current and operating over a wide frequency

bandwidth, the resulting impedance transfer function is dominated by the derivative and

has a correspondingly large dynamic range of at least 20 dB per decade. For practical



74 4. Active Piezoelectric Shunt Control

Z (s)
Vz

q

Vz

sZ (s)i i

Figure 4.1: Impedance synthesis using a charge controlled voltage source.

reasons, it is advantageous to maintain a constant signal level over all frequencies, hence

the motivation for controlling or measuring charge.

To implement a specified impedance Z(s), the terminal voltage Vz, as shown in Figure

4.1, should be related to the current i by,

Vz(s) = Z(s)i(s), (4.1)

which implies,

Vz(s) = sZ(s)q(s). (4.2)

For obvious reasons, the filter sZ(s), will be referred to as an s-impedance.

By viewing the charge q as a measurable system output, and the voltage Vz as an applied

control signal, the design of an appropriate s-impedance can be cast as a standard regulator

problem. After first modeling the dynamics of a shunted piezoelectric laminate structure

in Section 4.2, LQG, H∞, and H2 synthesis techniques are applied in Section 4.3.

4.2 Modeling

With the aim of facilitating active shunt design, this section introduces a charge-based

modeling technique for piezoelectric laminate structures.

Consider the piezoelectric laminate structure shown in Figure 4.2. Through the use of a

shunt patch driven by the voltage Vz, the goal is to suppress vibration resulting from two
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Figure 4.2: A general piezoelectric laminate structure excited by a distributed

force f(r, t) and the voltage Va(t) applied to a disturbance patch. The resulting

vibration d(r, t) is suppressed through the presence of an electrical impedance

connected to the shunt transducer.

disturbances: Va, the voltage applied to a disturbance patch, and f(r, t) a generally dis-

tributed external force. The implemented transfer function between the measured charge q

and applied voltage Vz effectively presents an electrical impedance Z(s) to the transducer.

The remainder of this section is dedicated to modeling the interaction between structure,

transducer, and impedance.

4.2.1 Composite Piezoelectric-mechanical System

Consider the piezoelectric laminate structure shown in Figure 4.3 (a). The structure is

disturbed by m transducers on the left side, and controlled by a further m collocated

transducers on the other. The task of modeling the composite piezoelectric-mechanical

system will proceed much as that presented in [91]. The possibility of multiple transducers
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Figure 4.3: A shunted multi-transducer structure (a). Synthetic implementation

of the impedance (b).

will be considered. To begin, let us define,

Vz =


Vz1

Vz2
...

Vzm

 Vp =


Vp1

Vp2
...

Vpm

 Va =


Va1

Va2
...

Vam

 i =


iz1

iz2
...

izm

 . (4.3)

By applying Ohm’s law, and writing Kirchoff’s Voltage Law (KVL) around the kth loop

we obtain,

Vz(s) = Z(s) i(s) (4.4)

Vzk(s) = Vpk(s)− 1
Cpks

i(s). (4.5)
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Figure 4.4: The multi-variable transfer function required to present an impedance

Z(s) to the shunt transducers shown in Figure 4.3 (b).

Assembling the results for each loop,

Vz(s) = Vp(s)− 1
s
Λ i(s), (4.6)

q = −Λ−1Vz + Λ−1Vp, (4.7)

where

Λ =



1
Cp1

1
Cp2

. . .

1
Cpm

 . (4.8)

After applying the principle of superposition, the strain contribution from each disturbance

and shunt voltage is

Vp(s) = Gva(s)Va(s) +Gvv(s)Vz(s), (4.9)

where Gva(s) and Gvv(s) are the multi-variable transfer functions from an applied distur-

bance and shunt voltage to the piezoelectric voltage Vp, i.e.

Gva(s) =
Vp(s)
Va(s) Gvv(s) =

Vp(s)
Vz(s)

. (4.10)

In the case where each disturbance and shunt transducer pair are identical, collocated,

and poled in opposite directions, Gva(s) = −Gvv(s).

Note that this analysis does not require an equal number of disturbance and shunt trans-

ducers. This case is considered only to allow a simplified representation of the feed-back

diagram associated with the system.
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The shunted composite system, alternatively referred to as the closed-loop system, can be

obtained from equations (4.4), (4.5), and (4.9),

Vp(s) =

[
I −Gvv(s) Z(s)

(
Z(s) +

1
s
Λ
)−1

]−1

Gva(s) Va(s). (4.11)

In a similar fashion, the composite displacement transfer function can also be derived,

d(r, s) =

[
I −Gvv(s) Z(s)

(
Z(s) +

1
s
Λ
)−1

]−1

Gda(s) Va(s), (4.12)

where Gda(s) is the transfer function from an applied disturbance Va to the resulting

displacement d at a point r.

By again applying the principle of superposition, the effect of a generally distributed

disturbance force f(r, s) can be included in the composite equations (4.11) and (4.12),

Vp(s) =

[
I −Gvv(s)Z(s)

(
Z(s) +

1
s
Λ
)−1

]−1

(Gva(s) Va(s) +Gvf (s) f(s)) , (4.13)

d(r, s) =

[
I −Gvv(s) Z(s)

(
Z(s) +

1
s
Λ
)−1

]−1

(Gda(s) Va(s) +Gdf (s) f(r, s)) , (4.14)

where Gdf (s) and Gvf (s) are the respective transfer functions from an applied force f to

the displacement d and shunt transducer piezoelectric voltage Vp. i.e.

Gvf (s) =
Vp(s)
f(r,s) Gdf (s) =

d(r,s)
f(r,s)

. (4.15)

As introduced in Chapter 2, the presence of an electrical shunt impedance can be viewed

as parameterizing an equivalent collocated strain feedback controller. The corresponding

multi-transducer interpretation is revealed in equations (4.11) and (4.12). In Figure 4.5,

the multi-transducer feedback interpretation is shown to be a direct extension of the single

transducer case.

Specific models for the transfer functions Gva, Gda, and Gvv will be required throughout

the upcoming process of control design. The technique of modal analysis [85, 41] has been

used extensively throughout the literature for obtaining structural models. Under certain

assumptions [85], the force, transducer voltage, or moment applied to a linear structure
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Figure 4.5: The equivalent feedback diagram representing Equation (4.11). In

this case, the disturbance and shunt transducers are identical and collocated. i.e.

Gva(s) = Gvv(s).

can be related to the resulting sensor voltage, strain, or displacement through a transfer

function of the following form,

G(s) =
∞∑
k=1

Ψk
s2 + 2ςkωks+ ω2

k

, (4.16)

where G(s) is intuitively parameterized by the structural resonance frequencies ωk, modal

damping ratios ςk, and vector coefficients Ψk. In practical applications, where only the

first N modes are of importance, the summation is usually truncated accordingly. i.e.

G(s) =
N∑
k=1

Ψk
s2 + 2ςkωks+ ω2

k

+D. (4.17)

The feed-through term D is included to correct in-bandwidth zero locations that are

perturbed by the truncation of higher order modes [92]. Based on (4.17), the system

transfer function Gvv is defined as,

Gvv(s) =
N∑
k=1

Ψvvk
s2 + 2ςkωks+ ω2

k

+Dvv. (4.18)

Likewise for the transfer functions Gva, Gda, Gdf and Gvf .
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Figure 4.6: The composite structural piezoelectric plant P.

4.2.2 Abstracted Plant Model

The general input-output model of a piezoelectric laminate structure is shown in Figure

4.6. In conformance with the standard MIMO control formulation [109], the plant contains

two sets of inputs: the disturbance signals w, and the control signals u. For the case under

consideration, the disturbance and control signals are realized through a set of voltages

Va and Vz applied to a number of laminated piezoelectric patches. The system outputs

Vp, d(r), and q, correspond respectively to the piezoelectric voltages induced in each shunt

patch, the dynamic displacement measured at a point r, and the charge resident on each

patch. The displacement signal d(r) is chosen as our performance variable z, while the

measured charge q is our feedback variable y. Although the induced shunt piezoelectric

voltages Vp are not required during the design, their inclusion aids in the modeling process.

Given a specific s-impedance, the signal Vp also allows us to compute the equivalent

collocated active feedback controller.

A state-space realization of (4.18) is easily generated to represent the system P ,

ẋ = Ax+B

 Va

Vz

 (4.19)


Vp

d(r)

q

 = Cx+D

 Va

Vz

 ,
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where,

A =



0 1

−ω2
1 −2ςiω2

1

. . .

0 1

−ω2
N −2ςNω2

N


(4.20)

B =
[
B1 B2

]
=



0 0

F1 H1

...
...

0 0

FN HN


(4.21)

C =


C1

C2

CpC1

 =


E1 0 · · · EN 0

1 0 · · · 1 0

CpE1 0 · · · CpEN 0

 (4.22)

D =


D11 D12

D21 D22

D11Cp −Cp +D12Cp

 , (4.23)

where Fk and Hk k ∈ {1, 2, · · ·N} are the state-input weightings of each disturbance and

shunt transducer. The vectors Ek k ∈ {1, 2, · · ·N} represent the contribution of each

mode to the induced piezoelectric voltages.

As an alternative to the parameterized modeling approach presented above, a multi-

variable time or frequency domain system identification technique could be employed to

estimate the plant P directly from experimental data [77, 84, 82].
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Figure 4.7: The composite plant with charge feedback controller C(s).

4.3 s-Impedance Control Design

4.3.1 LQG Design

Given the composite model discussed in Section 4.2, the problem of designing an appropri-

ate impedance can be cast as a standard regulator problem. As shown in Figure 4.7, the

regulator C(s) accepts the measured charge q to provide a control signal Vz counteractive

to the applied disturbance Va. The objective is to minimize the structural displacement

d(r) subject to a weighting on the magnitude of the required terminal voltage Vz. In a

linear quadratic sense, the objective is to minimize

J =
∫ ∞

0

{
d(r, t)2 + Vz(t)′kuVz(t)

}
dt, (4.24)

where ku is a weighting matrix representing the performance penalty on the shunt volt-

ages Vz. Based on the composite plant model (4.19), the performance signal d(r, t) is

represented by,

d(r, t) = C2x(t) +D21Va(t) +D22Vz(t). (4.25)
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Considering only the homogeneous component and substituting (4.25) into (4.24), the

objective function (4.24) can be rewritten as

J =
∫ ∞

0

{
x′(t)C′

2C2x(t) + Vz(t)′D′
22D22Vz(t) + 2x′(t)C′

2D22Vz(t) + Vz(t)′kuVz(t)
}

dt.

(4.26)

Restated in the standard LQR context,

J =
∫ ∞

0

{
x′(t)Qx(t) + u(t)′Ru(t) + 2x′(t)Nu(t)

}
dt, (4.27)

where,

Q = C′
2C2

R = D′
22D22 + ku (4.28)

N = C′
2D22.

Through the solution of an algebraic Ricatti equation [109], a state feedback matrix K

can be found that minimizes the objective function J .

Observer Design

As the state variables of the system x(t) are not available directly, a linear observer is

required.

For s-impedance design, where the controlled plant q(s)
Vz(s) is dominated by direct feed-

through, the ad-hoc pole-placement approach to linear observer design becomes difficult.

Although an LQR state-feedback regulator is guaranteed (if R is chosen diagonal) to

result in a phase margin of at least 60 degrees at each plant input channel [66, 104], it is

well known that considerable degradation of the stability-margins is to be expected after

inclusion of the observer dynamics.

A more automated choice in observer design is the Kalman filter [17]. Here, as shown

in Figure 4.8, the controller C(s) consists of an optimal state-feedback regulator K and

Kalman observer O. By the Certainty Equivalence Principle or Separation Theorem [109],
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Figure 4.8: The composite plant P controlled by C(s), an s-impedance consisting

of the optimal state-feedback regulator K and Kalman filter O.

the two entities can be designed independently. After first finding a K to minimize (4.27),

we then design a Kalman filter to minimize

Jk = lim
t→∞ E

{
[x(t)− x̃(t)] [x(t)− x̃(t)]′

}
. (4.29)

By the Certainty Equivalence Principle, the optimal K and O also result in minimization

of the stochastic performance objective,

J = E

{
lim
T→∞

1
T

∫ T

0

{
x′(t)Qx(t) + u(t)′Ru(t) + 2x′(t)Nu(t)

}
dt

}
. (4.30)

In this scenario we are referring to the original state-space system (4.19) with zero-mean

uncorrelated Gaussian process models for the disturbance Va and additive measurement

noise v. With the inclusion of measurement noise, the system representation (4.19) be-

comes

ẋ = Ax+B1Va +B2Vz (4.31)
Vp

d(r)

q

 = Cx+D

 Va

Vz

+

0

0

v

 ,
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where Va and v satisfy,

E
{
VaV

′
a

}
= Qn (4.32)

E
{
vv′
}
= Rn.

Based on Qn and Rn, a Kalman observer that minimizes (4.29) can be found through the

solution of an algebraic Ricatti equation [109]. The ratio ofQn toRn essentially represents

the confidence in the measured variable q and plant model P . In this work, Qn, Rn, and

ku, are not quantified exactly and simply treated as design parameters influencing the

closed-loop pole locations, damping performance, and closed-loop stability.

4.3.2 H2 and H∞ Design

In contrast to the observer based approaches presented in the previous sub-section, di-

rect output feedback synthesis techniques can also be applied. Figure 4.9 illustrates the

problem of s-impedance synthesis cast as a standard H2 or H∞ control design problem

[34, 33].

In an H2 sense, the goal is to minimize the transfer function from an applied disturbance

w to the performance signal z, i.e. we seek to minimize

J =
∥∥∥∥ z(s)w(s)

∥∥∥∥
2

(4.33)

=
∥∥∥∥d(r, s) + kuVz(s)Va(s)

∥∥∥∥
2

,

where the H2 norm ‖F (s)‖2 of F (s) is defined as

‖F (s)‖2
2 =

1
2π

∫ ∞

−∞
tr
{
F (jω)F (jω)′

}
dω. (4.34)

By Parseval’s equality, the optimalH2 controller minimizes the expected root-mean-square

(RMS) value of z. An optimal H2 controller can be found through the solution of an

algebraic Ricatti equation [34, 33].

Disadvantages associated with H2 and LQG methods include the unrealistic Gaussian

disturbance model, and problems related to integral performance constraints [109]. H∞
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Figure 4.9: The standard H2 and H∞ design problem containing the composite

plant P and a secondary performance signal weighting the applied shunt voltage

Vz.

optimization and robust control, originally championed by Zames [128], is an alternative

to H2 and LQG methods.

Applying H∞ control to the problem of s-impedance synthesis involves finding a controller

C(s) that minimizes

J =
∥∥∥∥ z(s)w(s)

∥∥∥∥
∞

(4.35)

=
∥∥∥∥d(r, s) + kuVz(s)Va(s)

∥∥∥∥
∞

,

where the H∞ norm ‖F (s)‖∞ of F (s) is defined as

‖F (s)‖∞ = max
ω

σ̄ (F (jω)) , (4.36)

where σ̄ denotes the maximum singular value.

In the time domain, H∞ control can be interpreted as minimizing the worst-case induced

2-norm of z, i.e. ∥∥∥∥ z(s)w(s)

∥∥∥∥
∞
= max
w(t) �=0

‖z(t)‖2

‖w(t)‖2

, (4.37)
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where ‖f(t)‖2
2 =

∫∞
0

∑
i |fi(t)|2 dt.

Closely resembling the solution to H2 synthesis, an optimal H∞ controller can be found

through the solution of an algebraic Ricatti equation [34, 33].

4.3.3 Disturbance Rejection versus Damping

Before concluding the topic of control synthesis, it is worth comparing our original objec-

tives to that which we have been able to specify within the LQG (4.24), H2 (4.33), and

H∞ (4.35) design frameworks.

The fundamental intention of many active and passive structural control strategies is

simply to augment the natural damping inherent in any structure. Using piezoelectric

transducers, the only techniques to actually achieve this goal involve full-information state-

variable feedback. Measuring selectively and directly the strain, displacement, or velocity

of individual modes, requiring the use of distributed modal sensors [74], is a formidable

and often deemed impractical approach. More commonly, the controller contains a state-

observer designed either explicitly, as in LQR design, or implicitly and possibly internally,

as in LQG, H2, and H∞ design. The question arises, “Even if the structural poles are

moved to a desirable location, what influence do the additional observer dynamics have

on the closed-loop system ?”. Given the spatially distributed nature of the system, an

even more fundamental issue is whether a particular design objective results in augmented

structural damping (by moving the closed-loop poles), or merely rejection of the repre-

sented disturbance. Although rejection of the disturbance w is desirable, in most cases

that particular disturbance is only representative, included for the sake of facilitating con-

trol design by standard methods. In the case of disturbance rejection, mitigation of a

general unmodeled disturbance is not guaranteed. As it occurs in this investigation, both

of these issues become especially acute.

Firstly, for LQG design, the desired open- and closed-loop pole locations are shown in

Figure 4.10. The controller acts to move the lightly damped structural poles further into

the complex left-half plane. In addition to the damped structural poles, observer poles,

appearing further to the left, are also present. Because of the high degree of damping in
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these poles, their contribution to the closed-loop system is insignificant. In this scenario,

the controller is referred to as augmenting the natural damping of the system. Any applied

disturbance encounters a system with heavily damped poles. If a controller exists to arise

in such a scenario, through inverse control, the design weights in an LQG problem can be

chosen to reproduce it. Unfortunately for conventional choices in the design parameters

(4.28) and (4.32), the closed-loop pole pattern is likely to present as illustrated in Figure

4.11. Even though both scenarios, Figures 4.10 and 4.11, result in identical closed-loop

performance, the controller resulting in the second pole pattern is obviously not augment-

ing the system damping. The residues, and hence contribution to closed-loop performance,

of the lightly damped poles in Figure 4.11 are negligible when considering that particular

representative disturbance. In the case of disturbances applied through different input

channels, the residues of such poles are not insignificant; in fact, they can be disastrous -

introducing auxiliary lightly damped resonances and severely degrading performance.

As might be expected due to similarities in LQG and H2 control design, the same situation

arises. The performance of an optimal H2 controller may be heavily dependent on the

disturbance channel. The problem also exists for H∞ control.

Being more than just an example, Figures 4.10 and 4.11, are actually the closed-loop pole

locations corresponding to two LQG controllers designed for the experimental system in-

troduced in Section 4.4.1. Although both controllers achieve comparable performance, only

the first results in augmented system damping. One can observe that controllers resulting

in pole locations resembling Figure 4.11, have approximately inverted the open-loop dy-

namics of the composite plant. During the design we wish to exclude such controllers from

the set of all permissible controllers that achieve the specified performance objective. This

seemingly complicated restriction can be accomplished in an ad-hoc but effective fashion

by simply increasing the dimension of the disturbance input w until the plant is no longer

square and hence uninvertible. The necessary additional disturbance signals should be

unique, but are not required to represent a genuine system disturbance. Their inclusion

is simply to remove the possibility of plant inversion from the range of outcomes pending

control design. In the H2 and H∞ cases, to avoid distortion of the original performance

specification, the influence of such auxiliary disturbances should be chosen small. To a
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Figure 4.10: The pole locations of an open- (©) and closed-loop (×) structural
system where the controller augments natural damping.

lesser extent, similar care should be taken in the LQG case.

For the pole patterns shown in Figures 4.10 and 4.11, the corresponding closed-loop H2

performance metrics are comparable. The only difference in each problem specification is a

small auxiliary input included when designing the controller in Figure 4.10. The composite

system originally included a single disturbance based on the use of a single shunt patch.

The disturbance Va to the following system was increased in dimension from 1 to 2 by

setting Fk =
[
Fk αkFk

]
, where αk is a small random number,

ẋ = Ax+B

 Va

Vz

 (4.38)


Vp

d(r)

q

 = Cx+D

 Va

Vz

 ,
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Figure 4.11: The pole locations of an open- (©) and closed-loop (×) structural
system where the controller does not augment natural damping.

where

B =
[
B1 B2

]
=



0 0

F1 H1

...
...

0 0

FN HN


. (4.39)

The result is the difference between true system damping and disturbance rejection.

4.4 Experimental Results

In the following sub-sections, LQG, H2, and H∞ s-impedance controllers are designed and

applied experimentally to control a piezoelectric laminate cantilever beam.

4.4.1 Experimental Apparatus

The experimental apparatus, shown in Figure 4.13 and pictured in Figure 4.12, consists of

a uniform aluminium cantilever beam. Three piezoelectric transducers are laminated onto
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Length, L 376 mm

Thickness, h 3 mm

Width, W 50 mm

Density, ρ 2.770×103 kg/m3

Young’s Mod., E 7.00×1010 N/m2

Table 4.1: Beam Parameters.

Length, Lpz 50 mm

Thickness, hpz 0.25 mm

Width, Wpz 15 mm

Charge Constant, d31 -210×10−12 m/V

Voltage Constant, g31 -11.5×10−3 V m/N

Coupling Coefficient, k31 0.34

Capacitance, Cp 43 nF

Young’s Mod., Epz 63×109 N/m2

Table 4.2: Properties of the PI Transducers (PIC151 Ceramic).

the front face and connected electrically in series to the voltage source Vz. A single collo-

cated disturbance transducer, identical to each of the shunt transducers, is also mounted

onto the back face and driven with the disturbance voltage Va. Physical parameters of the

beam and piezoelectric transducers can be found in Tables 4.1 and 4.2.

The displacement measurement d(r, t) is acquired using a Polytec PSV300 scanning laser

vibrometer.

Voltage Driver with Charge Instrumentation

The circuit pictured in Figure 3.9 is configured to operate as a high-voltage power amplifier

with charge instrumentation. As shown in Figure 4.14, a high-gain opamp is used to

maintain a reference voltage Vref across the load ZL(s). An arbitrary voltage gain can be
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Figure 4.12: The cantilever beam.

Vz

Figure 4.13: A front elevation of the cantilever beam. A single collocated

disturbance transducer excited by the voltage Va, is also mounted on the back

face.



4.4 Experimental Results 93

Z   (s)L

C s

Vref

V
s

i L

Figure 4.14: A voltage amplifier with charge measurement.

implemented by controlling attenuation in the feedback path. The voltage Vs, measured

across the sensing capacitor Cs, is proportional to the load charge q. The charge gain in

Volts per Coulomb is equal to 1
Cs
, i.e.

Vs
q

=
1
Cs

V

C
. (4.40)

For implementation of s-impedance controllers, the charge q is defined flowing out of the

load, in this case the charge instrumentation gain is negative. An alternative to the circuit

shown in Figure 4.14 is to interchange the load and sensing impedances. In this case, the

feedback voltage is taken directly across the grounded load.

4.4.2 System Identification

Before beginning the control design, a model must first be obtained for the composite

system P . As the variables Va, Vz, q, and d(r) are not driven or accessible directly, the

amplifier and instrumentation dynamics will also be included in the model. Shown in

Figure 4.15, the dynamics encountered through each I/O channel are listed in Table 4.3.

Referring to the system model (4.19), after inclusion of the amplifier and instrumentation
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Voltage Gain, k1 -10 V
V

Displacement Gain, k2 1× 103 V
m

Voltage Gain, k3 4 V
V

Charge Gain, k4
−1

100×10−9
V
C

Table 4.3: The experimental system gains.

V

P

z q

d (r)Va
k 1

k 3

k 2

k 4

w

u

z

y

Figure 4.15: The composite plant P with external power amplifier and instru-

mentation gains included.

gains, the B, C, and D matrices become,

B =
[
k1B1 k3B2

]
=



0 0

k1F1 k3H1

...
...

0 0

k1FN k3HN


(4.41)

C =


C1

k2C2

k4CpC1

 =


E1 0 · · · EN 0

k2 0 · · · k2 0

Cpk4E1 0 · · · Cpk4EN 0

 (4.42)

D =


D11 D12

k1k2D21 k3k2D22

k1k4D11Cp k3k4 [−Cp +D12Cp]

 . (4.43)

To determine the model parameters, a simple optimization scheme is employed. From an

initial guess, ωi and ςi, are found through a simplex optimization based on the frequency
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response from an applied disturbance to the measured displacement,[
ωk ςk

]
= arg min

∥∥∥P̃dVa(jω)− PdVa(jω)
∥∥∥

2
, (4.44)

where P̃dVa(jω) is the measured frequency response from an applied disturbance Va(s) to

the displacement d(r, s). With these parameters in hand, those remaining are determined

from a final global optimization,

arg min
∥∥∥P̃ (jω)− P (jω)

∥∥∥
2, W

. (4.45)

As gains from channel to channel vary greatly, a multivariable frequency weight W is

required to normalize the cost of each error transfer function.

The magnitude and phase response of the measured system and resulting model are shown

in Figures 4.16 and 4.17. The model is an accurate representation of the measured system.

In the following sections, it will be of interest to examine the robustness of each control

strategy subject to a change in the structural resonance frequencies. Experimentally, such

variation is accomplished by affixing a mass 60 mm from the beam tip. The corresponding

change in structural resonance frequencies is illustrated in Figure 4.18.
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Figure 4.16: The simulated (- -) and experimental (—) magnitude frequency

response of the shunt voltage controlled piezoelectric beam (in decibels).
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Figure 4.17: The simulated (- -) and experimental (—) phase frequency response

of the shunt voltage controlled piezoelectric beam (in degrees).
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Figure 4.18: The experimental frequency response from an applied disturbance

voltage Va (V ) to the resulting tip displacement d (m). Free (- -), With Mass

(—).
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C1 10 nF C2 10 nF

L1 11690 H L2 348 H

R1 15 kΩ R2 9 kΩ

Table 4.4: Component values of the current-flowing shunt circuit.

C1

L 1

C 2

L 2

ω1 ω2

R 1 R 2

Figure 4.19: A dual-mode current-flowing piezoelectric shunt damping circuit

[13].

4.4.3 Passive Shunt Design

For the sake of comparison, each LQG, H2, and H∞ shunt impedance will be judged

against a traditional resonant piezoelectric shunt damping circuit applied to the same

structure. A current-flowing shunt circuit [13] was designed and tuned to minimize the

H2 norm of the cantilever beam. The schematic and component values can be found in

Figure 4.19 and Table 4.4.
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4.4.4 LQG Shunt Design

Following the procedure described in Section 4.3.1, an s-impedance can be designed and

implemented to minimize an LQG performance objective. Based on the state-space model

procured in Section 4.4.2, an LQR gain matrix was designed to minimize the following

cost function,

J =
∫ ∞

0

{
d(r, t)2 + ku Vz(t)2

}
dt. (4.46)

where ku, the control signal weighting, was chosen to be 2.6×10−11. Considering the

relative difference in magnitude between the displacement d(r, t) and Vz(t), a small value

for ku is not unexpected.

With the addition of an auxiliary input to avoid plant inversion, a Kalman observer was

designed to estimate the system state x(t) utilizing the measured shunt transducer charge

q(t) and control signal Vz(t). Referring to Section 4.3.1, the disturbance and output noise

process covariance matrices, Qn and Rn, were chosen as 1 and 0.1 respectively. Such a

weighting, although not quantitative, expresses a moderate confidence in the fidelity of

the measured variable q.

By concatenating the LQR gain matrix and Kalman observer, and compensating for the

system gains k3 and k4, the actual impedance presented to the shunt transducer can be

determined. In Figure 4.20, the complex s-impedance of the resulting controller is plotted

together with the s-impedance of an ideal negative capacitor controller [10, 125]. The

LQG controller mimics the response of an ideal negative capacitor at frequencies in the

vicinity of each structural resonance. Unlike the negative capacitor which theoretically

applies an infinite gain at all frequencies, the LQG controller exerts influence only where

necessary and has the benefit of rolling off at higher frequencies. The LQG controller

pole-zero map is shown in Figure 4.21.

After examining the open- and closed-loop pole locations shown in Figure 4.22, it can be

concluded that the controller is clearly acting to increase the system damping. Corre-

sponding mitigation of the transfer function from an applied disturbance to the measured

displacement can be seen in both the frequency domain, Figure 4.23, and time domain,
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Figure 4.24. The magnitude of the first and second structural modes are reduced by 27.2

and 19.2 dB respectively. As the second mode contributes significantly less to the LQG

cost function, the majority of control effort is expended on the first and most dominant

mode. Damping ratios of the first and second structural modes are increased from 0.00246

to 0.0948, and from 0.0011 to 0.00989.

An unexpected feature of the LQG s-impedance is its smooth frequency response; there

are no localized peaks at the resonance frequencies. In contrast, high-performance active

strain-, velocity-, and acceleration-feedback controllers characteristically apply a highly

localized gain at the frequencies of structural resonance. In the advent of model variation,

such localized behavior can result in considerable performance degradation. In order to

examine system robustness, the nominal system is perturbed by adding a mass 60 mm

from the beam tip. Aside from the disturbance to the underlying PDE, the first and second

resonance frequencies are decreased by 13.5 and 2.2 % respectively. The consequence on

both passive and active shunt circuits is shown in Figure 4.25. While the LQG shunt

loses only 1.7 and 0.2 dB from its unperturbed attenuation of the first and second modes,

the passive shunt loses 13.4 and 4.8 dB. Corresponding time domain results are shown in

Figure 4.26.

In a final test to validate the LQG s-impedance, an acoustic loud speaker was used to

spatially excite the structure. The measured frequency response, shown in Figure 4.27,

verifies that the achieved performance is disturbance-channel independent.
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Figure 4.20: Complex s-impedance of the LQG (—), and ideal negative capacitor

(- -) shunt controller.
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Figure 4.21: The LQG shunt controller pole (×) and zero (©) locations.
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Figure 4.22: The open- (©), and closed-loop (×) pole locations of the LQG

shunt controlled system.
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Figure 4.23: The experimental (—), and simulated (- -), LQG shunt controlled

frequency responses from an applied disturbance voltage Va (V ) to the resulting

tip displacement d (m) (in decibels). The open-loop frequency response is also

shown (—).
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Figure 4.24: Tip displacement response d (m) of the LQG shunt controlled

system to a step disturbance in Va. Experimental open-loop (a), closed-loop (b),

and simulated closed-loop (c).
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Figure 4.25: The free (- -), and with-mass (—), passive (a) and LQG shunt con-

trolled (b) experimental frequency responses from an applied disturbance voltage

Va (V ) to the resulting tip displacement d (m) (in decibels).
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Figure 4.26: The free (left column) and with-mass (right column) tip displace-

ment response d (m) to a step disturbance in Va. Experimental open-loop (a),

passive shunt controlled (b), and LQG shunt controlled (c) systems.
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Figure 4.27: The open-loop (a), and LQG shunt controlled (b) linear magnitude

response from an applied acoustic disturbance to the resulting tip displacement

d (m).
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4.4.5 H2 Shunt Design

In analogy to Section 4.4.4, this sub-section documents the design and implementation

of an H2 s-impedance. As discussed in Section 4.3.2, an H2 s-impedance is designed to

minimize the following cost function,

J =
∥∥∥∥d(r, s) + kuVz(s)

Va(s)

∥∥∥∥
2

, (4.47)

where ku, the control signal weighting, was chosen to be 3.2×10−7. A random auxiliary

input of negligible influence was also included to avoid plant inversion.

The complex s-impedance of the resulting H2 controller, plotted in Figure 4.28 is similar

in response to the LQG controller shown in Figure 4.20. The controller pole-zero map is

shown in Figure 4.29.

Examining the open- and closed-loop pole locations shown in Figure 4.30, the controller

is clearly augmenting the system damping. Corresponding mitigation of the transfer func-

tion from an applied disturbance to the measured displacement can be seen in both the

frequency domain, Figure 4.31, and time domain, Figure 4.32. The magnitudes of the first

and second structural modes are reduced by 27.1 and 23.1 dB respectively.

Robustness of the controller is again investigated by affixing a mass to the beam. The

effect on closed-loop performance can be seen in Figures 4.33 and 4.34. The H2 controller

loses 1.3 and 0.2 dB from its nominal closed-loop attenuation of the first and second

modes.

Acoustic excitation results are shown in Figure 4.35.
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Figure 4.28: Complex s-impedance of the H2 (—), and ideal negative capacitor

(- -) shunt controller.
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Figure 4.29: The H2 shunt controller pole (×) and zero (©) locations.
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Figure 4.30: The open- (©), and closed-loop (×) pole locations of the H2 shunt

controlled system.
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Figure 4.31: The experimental (—), and simulated (- -), H2 shunt controlled

frequency responses from an applied disturbance voltage Va (V ) to the resulting

tip displacement d (m) (in decibels). The open-loop frequency response is also

shown (—).
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Figure 4.32: Tip displacement response d (m) of the H2 shunt controlled system

to a step disturbance in Va. Experimental open-loop (a), closed-loop (b), and

simulated closed-loop (c).
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Figure 4.33: The free (- -), and with-mass (—), passive (a) and H2 shunt con-

trolled (b) experimental frequency responses from an applied disturbance voltage

Va (V ) to the resulting tip displacement d (m) (in decibels).
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Figure 4.34: The free (left column) and with-mass (right column) tip displace-

ment response d (m) to a step disturbance in Va. Experimental open-loop (a),

passive shunt controlled (b), and H2 shunt controlled (c) systems.
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Figure 4.35: The open-loop (a), and H2 shunt controlled (b) linear magnitude

response from an applied acoustic disturbance to the resulting tip displacement

d (m).
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4.4.6 H∞ Shunt Design

This sub-section documents the design and implementation of an H∞ s-impedance. As

discussed in Section 4.3.2, an H∞ s-impedance is designed to minimize the following cost

function,

J =
∥∥∥∥d(r, s) + kuVz(s)

Va(s)

∥∥∥∥
∞

, (4.48)

where ku, the control signal weighting, was chosen to be 3.2×10−7. A random auxiliary

input of negligible influence was also included to avoid plant inversion.

The complex s-impedance and pole-zero map of the resulting H∞ controller are plotted

in Figures 4.36 and 4.37.

Examining the open- and closed-loop pole locations shown in Figure 4.38, the controller

is clearly augmenting the system damping. Corresponding mitigation of the transfer func-

tion from an applied disturbance to the measured displacement can be seen in both the

frequency domain, Figure 4.39, and time domain, Figure 4.40. The magnitudes of the

first and second structural modes are reduced by 30.3 and 24.0 dB respectively. Damping

ratios are increased from 0.00246 to 0.0288, and from 0.0011 to 0.00766.

The effect of additional mass can be observed in Figures 4.41 and 4.42. The H∞ controller

loses 3.3 and 0.8 dB from its nominal closed-loop attenuation of the first and second modes.

Acoustic excitation results in both the frequency and time domains are shown in Figures

4.44 and 4.43.
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Figure 4.36: Complex s-impedance of the H∞ (—), and ideal negative capacitor

(- -) shunt controller.
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Figure 4.37: The H∞shunt controller pole (×) and zero (©) locations.
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Figure 4.38: The open- (©), and closed-loop (×) pole locations of the H∞

shunt controlled system.
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Figure 4.39: The experimental (—), and simulated (- -), H∞ shunt controlled

frequency responses from an applied disturbance voltage Va (V ) to the resulting

tip displacement d (m) (in decibels). The open-loop frequency response is also

shown (—).
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Figure 4.40: Tip displacement response d (m) of the H∞ shunt controlled

system to a step disturbance in Va. Experimental open-loop (a), closed-loop (b),

and simulated closed-loop (c).
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Figure 4.41: The free (- -), and with-mass (—), passive (a) and H∞ shunt con-

trolled (b) experimental frequency responses from an applied disturbance voltage

Va (V ) to the resulting tip displacement d (m) (in decibels).



122 4. Active Piezoelectric Shunt Control

−5

0

5

x 10
−6 Free

(a
)

−5

0

5

x 10
−6 With Mass

−5

0

5

x 10
−6

(b
)

−5

0

5

x 10
−6

0 5 10 15

−5

0

5

x 10
−6

(c
)

t (s)
0 5 10 15

−5

0

5

x 10
−6

t (s)

(d
)

Figure 4.42: The free (left column) and with-mass (right column) tip displace-

ment response d (m) to a step disturbance in Va. Experimental open-loop (a),

passive shunt controlled (b), and H∞ shunt controlled (c) systems.
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Figure 4.43: The open-loop and H∞ shunt controlled tip displacement response

d (m) to an acoustic sinusoidal disturbance at the 1st (a) and 2nd (b) structural

resonance frequencies. Control is applied at approximately time 25.8 s.
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Figure 4.44: The open-loop (a), and H∞ shunt controlled (b) linear magnitude

response from an applied acoustic disturbance to the resulting tip displacement

d (m).
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1st Mode 2nd Mode

Frequency Unperterbed Perterbed Unperterbed Perterbed

Passive 14.2 dB 0.8 dB 22.1 dB 17.3 dB

LQG 27.2 dB 25.5 dB 19.2 dB 19.4 dB

H2 27.1 dB 25.8 dB 23.1 dB 22.9 dB

H∞ 30.3 dB 27.0 dB 24.0 dB 23.2 dB

Table 4.5: Modal attenuation summary.

4.5 Conclusions

A framework has been presented for the design of active shunt impedances. By viewing a

piezoelectric laminate structure as a system with voltage inputs and charge outputs, the

task of shunt impedance design can be accomplished through the solution of a standard

control problem e.g. by LQG, H2, or H∞ synthesis. The resulting controller, effectively

the derivative of impedance, can be implemented directly with a voltage amplifier and

charge measurement.

Although the fundamental goal in smart structure design is often to augment system

damping, this cannot be specified directly as an LQG, H2, or H∞ performance objective.

The approach has been to achieve this indirectly through mitigation of the performance

transfer function d(s)
Va(s) .

As the system we are considering is spatially distributed, our controller should ensure

performance subject to any realizable disturbance. To achieve this, an ad-hoc technique

has been proposed to avoid the possibility of disturbance channel sensitivity and plant

inversion.

Experimentally, the active shunts have proven to introduce significant system damping,

up to 30.3 dB attenuation of the first cantilever mode. A comparison of modal attenuation

for each active shunt impedance can be found in Table 4.5. The performance of a current-

flowing passive shunt circuit is included as a reference.
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While achieving levels of performance previously only available through sensor-based feed-

back control, active shunt impedances are remarkably insensitive to variation in the struc-

tural resonance frequencies. By adding a mass to the beam, a 13.5 % change in the first

resonance frequency results in only a slight loss in performance. By comparison, the same

variation has a disastrous consequence on a current-flowing shunt circuit. Such sensitivity

has previously limited the practical application of active and passive vibration control

systems in smart structure design.

Another well known problem associated with passive shunt damping is the lack of control

influence. Given a lightly damped structure, even the small counteractive forces associated

with passive shunt circuits can significantly increase system damping. Many practical

mechanical structures naturally exhibit higher levels of damping. In such cases, passive

piezoelectric shunt circuits are of limited use. As the amount of control influence associated

with active shunt impedances is arbitrary, the possibility now exists for controlling more

heavily damped systems. In such cases, the control voltage Vz is expected to become quite

large. At high drive voltages it may be necessary to address the inherent piezoelectric

hysteresis.

The reader will appreciate that the presented techniques are quite general and valid for

structures incorporating multiple piezoelectric transducers. Although the application of

sensor-based feedback control is well defined and feasible for structures with multiple

sensors and actuators, the same can not be said for multi-transducer shunt circuits [91].

Present multi-transducer, multi-mode shunt circuits are simply a direct extension of single

transducer shunt circuits. Each circuit is restricted to be independent and attached to a

single transducer. If a single mode is to be targeted by two or more transducers, the task

of tuning the shunt circuit can become extremely tedious. In addition to the complicated

interaction between transducers at those frequencies, there are now as many more tuning

parameters as there are transducers per mode. The design freedom afforded with active

shunts not only eliminates the complicated task of tuning, but allows for full utilization of

each patch. The resulting impedance is unstructured, multivariable, and able to exploit

benefits that may arise from inter-transducer coupling.
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Potential applications for active piezoelectric shunt control include sensor-less, high per-

formance vibration control of acoustic panels, flexible structures, and positioning systems.

Future work includes multi-transducer structures and passive impedance design. The

LQG, H2, and H∞ impedances contained negative reactive components and are unsta-

ble in a systems perspective. Although the connection of the transducer and control

impedance is stable, an inherently stable controller is desirable. It is presently unclear if

negative reactive components are necessary to result in effective vibration reduction.
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5

Electromagnetic Shunt Control

Piezoelectric transducers exhibit an electro-mechanical coupling between the terminal volt-

age and developed strain. When laminated onto the surface of a host structure, a strain

transducer provides authority over out-of-plane vibrations.

In a similar fashion, electromagnetic transducers exhibit a coupling between the coil cur-

rent and force. Electromagnetic transducers are used in vibration control for direct in-

plane force actuation. This chapter introduces a new technique for the control of electro-

magnetically actuated systems. In analogy to previous concepts presented in this thesis,

an electromagnetic shunt impedance can be designed to minimize vibration.

5.1 Introduction

Electromagnetic transducers [86, 101, 54] can be used as actuators, sensors, or both.

When a current is applied to the terminals of an electromagnetic transducer, a force

is exerted, conversely, when a transducer experiences a velocity, an open-circuit voltage

is induced. Piezoelectric transducers [42], exhibit similar electromechanical properties

but are characterized by a high mechanical impedance. Electromagnetic transducers are

capable of significantly greater strokes, typically in the millimeter range compared to the

micrometer range.

Physically, electromagnetic devices are robust and can be manufactured on all scales from
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MEMS devices [6], to large 100kN electrodynamic shakers. Such transducers have found

application in the fields of: car suspension systems [69], isolation platforms [106], acoustic

speakers [55], magnetic levitation [119, 20], and magnetic bearings [93].

In analogy to the technique of piezoelectric self-sensing [32, 7], a recent literature has

also developed on the topic of electromagnetic self-sensing actuators [119, 20, 93, 54, 72].

This technique involves estimating the relative velocity experienced by the transducer

from the measured coil current and driving voltage. An example of this technique can be

found in [21], where the acoustic pressure of an enclosed-sound field is estimated from the

measured current flowing through an actuating speaker coil. A feedback loop, driving the

speaker voltage, is constructed around the estimate to minimize acoustic pressure within

the enclosure.

This chapter demonstrates the modeling, design, and implementation of active impedance

and admittance controllers for electromagnetically actuated systems. By measuring the

coil terminal voltage and controlling the resultant current or vice-versa, it is possible to

control a coupled mechanical system. By revealing the underlying feedback structure,

the problem is cast as a standard MIMO control problem, for which the application of

synthesis techniques such as LQR and H2 is straight-forward. Using this technique, the

need for an external sensor is eliminated, significantly reducing the cost, complexity, and

sensitivity to transducer failure that in many applications, may preclude the use of an

active control system.

Although, the focus is on the control of a system similar to an isolation column, the gener-

ality of the modeling and design framework is intended to be extensible to a large class of

mechanical systems. Such applications include: MIMO vehicle suspension systems, vibra-

tion isolation platforms, and the control of enclosed-sound fields. Active admittance and

impedance controllers require no external sensors, are capable of minimizing a pre-specified

performance objective, and can also be used to estimate physical variables dynamically

related to the system states such as velocity.

Three applications presently under investigation are shown in Figures 5.1, 5.2, and 5.3 :
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Figure 5.2: An electromagnetic proof-mass damper.
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• An isolation platform attempts to mitigate the specimen displacement y resulting

from a base disturbance d and on-board force Fs. As shown in Figure 5.1, a low-

frequency spring-mass damper is often employed as a mechanical filter. Additional

attenuation and control of the mechanical resonance can be achieved with a force Fe

generated by an electromagnetic transducer.

• A proof-mass or inertial damper is a device mounted onto a vibrating body in order

to counteract an applied disturbance Fb. The mass, spring constant, and damping

can be tuned to suppress a single structural mode of the vibrating body. Additional

broad-band attenuation can be achieved through the use of active feedback control

and an electromagnetic force actuator.

• Acoustic drivers are a common form of electromagnetic actuator. In active noise

control scenarios, the baffle velocity νb is used to mitigate the sound preasure P

resulting from a disturbance particle velocity νd. This particular problem is compli-

cated by a secondary feedback loop resulting from the acoustic back-preasure Fp. In

all other aspects the problem reduces to that presented in the following discussion.

This chapter is presented in five sections. Section 2 begins with the modeling of mechanical,

electromagnetic, and composite systems. A method is then presented in Section 3 for the

design of active impedance and admittance controllers to minimize a time domain (LQR)

and frequency domain (H2) performance objective. The presented techniques are then

applied to an experimental electromagnetic system in Section 4. Finally, conclusions are

drawn in Section 5.

5.2 Modeling

This section introduces a modeling technique for the design and analysis of shunted elec-

tromechanical systems. Although the focus is on a single-degree-of-freedom system, the

process is quite general and can easily be extended to more complex mechanical systems.
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5.2.1 Electromagnetic System

When an electrical conductor moves in a magnetic field as shown in Figure 5.4 (a), a

voltage V proportional to the velocity ν is induced and appears across the terminals of

the coil,

V ∝ ν. (5.1)

Specifically,

V

ν
= Dl, (5.2)

where D is the magnetic flux (in Teslas), l is the length of the conductor (in meters), and

ν is the velocity of the conductor relative to the magnetic field (in ms−1). A permanent

magnet is usually the source of the magnetic field. In another configuration the coil is

kept stationary and the magnet is made to move.

Assuming the coil is exposed to a field of constant flux density and the relative displacement

is small, equation (5.2) can be rewritten [101] as

V

ν
=

F

I
= Dl = Cn, (5.3)

where F denotes the force (in Newtons) acting on the coil carrying a current I (Amps),

and Cn is the ideal electro-mechanical coupling coefficient.

As shown in Figure 5.4 (b), when the coil is employed as a force actuator, equation (5.3)

relates the induced force to an applied current. Electrodynamic shakers and acoustic

speakers operate on this principle.

As shown in Figure 5.5, the coil can be modeled as the series connection of an inductor L, a

resistor R, and a dependent voltage source Ve [54]. When coupled to a mechanical system,

the induced electro-motive-force (emf) and hence mechanical velocity can be determined

from the open-circuit coil terminal voltage.

5.2.2 Mechanical System

The general model of a mechanical system is shown in Figure 5.6. In addition to various

application specific inputs and outputs, to couple the system to an electromagnetic actu-



134 5. Electromagnetic Shunt Control

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

F

P

e
F p v

b

v
d

Figure 5.3: Voice coil acoustic control.

N NS

V

N NS

F
I

(b)(a)

ν

Figure 5.4: Electromagnetic transducer, (a) sensing and (b) actuating.
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Figure 5.5: The mechanical (a) and electrically equivalent model (b) of an

electromagnetic transducer.
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Figure 5.6: The general mechanical plant model.

ator, the model requires a force input Fe and a velocity output ν. In a typical scenario,

the model would also describe the influence of a specific disturbance input w.

In many cases where vibration becomes an issue, the mechanical structure can be modeled

as a simple mass-spring-damper system shown in Figure 5.7 (a). Examples include, but

are not limited to: isolation columns, magnetic bearings, and suspension systems.

The equation of motion for a forced one degree of freedom system is

Mν̇(t) + Cν(t) +Kd(t) = Fd(t), (5.4)

where Fd(t) is the applied force, M is the equivalent mass (in kg), K is the spring con-

stant (in N/m), C is the damping constant (in Ns/m), and ν̇(t), ν(t) and d(t) are the

acceleration, velocity and displacement respectively. The dimensionless representation of
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equation (5.4) is

ν̇(t) + 2ζnωnν(t) + ω2
nd(t) = fd(t), (5.5)

where ωn is the natural frequency of the system and ζn is the damping ratio. Note that

ωn =
√

K
M , ζn = C√

4MK
and fd(t) =

Fd(t)
M . In the Laplace domain, the transfer function

GνF (s) from an applied force to the resulting velocity is

GνF (s) =
ν(s)
Fd(s)

=
s 1
M

s2 + s CM + K
M

. (5.6)

In later sections, the following minimal state-space model for GνF (s) will also be required,

ẋp(t) = Apxp(t) +BpFe(t) (5.7)

ν(t) = Cpxp(t).

Consider Figure 5.7 (b), where a single-degree-of-freedom system is coupled to two elec-

tromagnetic coils. Coil 1 is used to introduce a force disturbance, and coil 2, to control the

resulting vibration. The corresponding mechanical plant model P is shown in Figure 5.8.

The general constants C1 through C4 represent the various electro-mechanical coupling
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Figure 5.8: The mechanical plant P with a current disturbance I1, and command

input Fe.

constants as defined in (5.8). The constants are defined individually as the two coils will

neither be perfectly matched nor have exactly identical force-current or velocity-voltage

ratios. By definition,

C1 = Fd
I1

C2 =
Ve1
ν

C3 = Fe
I2

C4 =
Ve2
ν

(5.8)

Using the constants defined in (5.8), the electromagnetic system E associated with coil

2 is shown in Figures 5.9 (a) and (b) for both combinations of voltage and current drive

respectively.

5.2.3 Shunted Composite Electromechanical System

A mechanical system GνF (s) coupled to a shunted electromagnetic transducer as shown

in Figure 5.7 (b) is now considered. In this case, where coil 1 is used to introduce a force

disturbance Fd, coil 2, the shunted coil, is used to reduce the resulting vibration.

Within the modeling framework introduced in the previous two subsections, i.e. by treating

the mechanical plant and shunted electromagnetic coil as shown in Figures 5.8 and 5.9,

it is a simple and intuitive task to construct the composite system. For both the current

and voltage driven coil models, the interconnection of each electromagnetic system with

the mechanical plant model is shown in Figures 5.10 (a) and 5.11 (a).

In Figure 5.10 (a) the admittance Y (s), interpreted simply as the transfer function relating
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driven (b) electromagnetic actuator.

the coil terminal voltage to current, appears like a feedback controller for the electrome-

chanical system. By concatenating the mechanical and electromagnetic systems, P and E,

as shown in Figure 5.10 (b), the composite system is cast as a typical regulation problem

for the abstracted system G. It is easily shown that the closed-loop transfer function from

an applied disturbance current I1(s) to the resulting plunger velocity ν is

ν(s)
I1(s)

=
GνF (s)C1

1 +K(s)C3C4GνF (s)
, (5.9)

where K(s), the equivalent velocity feedback controller is

K(s) =
Y (s)

1 + Y (s)(Ls+R)
. (5.10)

Similarly, in Figure 5.11 (a) the impedance Z(s), interpreted simply as a transfer function

relating the coil terminal current to voltage, appears like a feedback controller for the

electromechanical system. By concatenating the mechanical and electromagnetic systems,

P and E, as shown in Figure 5.11 (b), the composite system is cast as a typical regula-

tion problem for the abstracted system G. In this case, the equivalent velocity feedback

controller is,

K(s) =
1

Ls+R+ Z(s)
. (5.11)
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Figure 5.12: A resonant shunt circuit for electromagnetic transducers.

5.3 Control Design

As shown in Figures 5.10 and 5.11, and in equation (5.9), an impedance or admittance can

be viewed as parameterizing an equivalent velocity feedback controller for the mechani-

cal system GνF (s). The following subsections introduce a number of techniques for the

synthesis of active impedance and admittance controllers designed to minimize structural

vibration.

5.3.1 Passive Shunt Circuits

Alike the piezoelectric analogy, a resonant shunt circuit can be used to compensate for the

reactive source impedance over a small frequency band. In reference [9] the circuit shown

in Figure 5.12 was shown to significantly attenuate a lightly damped mechanical system.

The circuit requires a negative resistance to cancel the natural resistance of the coil.

Resonant shunt circuits provide a fixed performance objective, they introduce additional

dynamics that attenuate a highly resonant structural mode. Although this is desirable

in piezoelectric applications, the same objective is unlikely to arise in electromagnetic

applications. Firstly, considering the three examples shown in Figures 5.1, 5.2, and 5.3,

the mechanical system is likely to contain a naturally high degree of damping. Resonant

shunt circuits provide no additional performance is such cases. The exception is an isola-

tion platform where the system may be lightly damped in order to achieve a faster local

roll-off after the resonance. Secondly, the objective of resonant shunt circuits - to intro-
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duce additional damping, may not be useful at all. In both Figures 5.2 and 5.1 in fact

the reverse is true, a lightly damped resonance is required to counteract the structural

modes of the system. It may actually be necessary to reduce the system damping. For

these reasons, the only techniques discussed in detail, are those capable of minimizing an

arbitrary performance objective, one that can be applied in any situation.

5.3.2 Ideal Negative-Inductor Controller

By substituting the equivalent impedance parameterized feedback controller (5.11) into

the closed-loop transfer function (5.9), we obtain,

ν(s)
I1(s)

=
GνF (s)C1 (Ls+R+ Z(s))

Ls+R+ Z(s) + C3C4GνF (s)
. (5.12)

Observe that the numerator is affine in the transfer function Ls+R+Z(s). Thus, ideally,

by equating Ls + R + Z(s) to zero, we can reduce the closed-loop transfer function ν(s)
I1(s)

to zero. In other words, by choosing

Z(s) = −Ls−R, (5.13)

or

Y (s) =
1

−Ls−R
, (5.14)

any introduced disturbance will have little or no effect on the mechanical system. A similar

result exists for piezoelectric transducers [10, 8, 126].

As is the case for piezoelectric transducers, and as one might expect, such a ‘miracle’ con-

troller has limited practical use. By implementing (5.14) or (5.13) the effective controller

is simply a proportional feedback loop of infinite gain. Besides the magnitude of control

energy required, the stability and performance is extremely sensitive to small changes in

the transducer dynamics.

In practice, by tuning the magnitudes of the negative inductor and resistor, the con-

trol effort can be toned down. Due to the ad-hoc nature of this approach, it is difficult

to accurately manipulate the trade-off between control effort and damping performance.

For example, using a negative inductor-resistor controller, it is impossible to distribute,
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concentrate, or mitigate the control energy associated with individual structural modes.

Neither is it possible to minimize a specific performance function not proportionally re-

lated to the plunger velocity. In cases where the goal is not simply to reduce the magnitude

of plunger velocity, such as in acoustic, isolation, and suspension systems, the negative

inductor controller is of little use.

In spite of the associated problems, this technique warrants mention due to its inherent

simplicity and utility in gaining an intuitive understanding of the abstract controllers

generated from an automated synthesis process such as LQR.

5.3.3 Impedance Synthesis

Referring to Figure 5.11, the shunted electromechanical system can be regarded as a typical

feedback control system where a disturbance I1 results in a vibration characterized by the

velocity ν(t).

In order to apply standard synthesis techniques such as LQR, we require a minimal state

space model representing the composite system. By defining the following state-space

model for the coil admittance 1
Ls+R ,

ẋy(t) = Ayxy(t) +ByV (t) (5.15)

Iz(t) = Cyxy(t),

where, Ay =
[−R

L

]
, By = [1], and Cy =

[
1
L

]
, the following state-space model is easily

derived for the composite system G,

ẋg(t) = Agxg(t) +Bg

 I1(t)

Vz(t)

 (5.16)

 ẋ(t)

Iz(t)

 = Cgxg(t),

where,

xg(t) =

 xp(t)

xy(t)

 , Bg =

 BpC1C4 0

0 −By

 , (5.17)
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and

Ag =

 Ap BpCyC3C4

ByCp Ay

 , Cg =

 1
C4
Cp 0

0 Cy

 . (5.18)

Our design objective is to minimize the velocity ν(t) whilst restraining the magnitude of

the control signal Vz. In a linear quadratic sense, the objective is to minimize

J =
∫ ∞

−∞

[
ν2(t) + (kuVz(t))

2
]

dt, (5.19)

where ku is the control signal weighting. Restated, in the standard LQR context,

J =
∫ ∞

−∞

[
x

′
g(t)Qxg(t) + u

′
(t)Ru(t)

]
dt, (5.20)

the corresponding Q and R matrices are Q =
[

1
C4
Cp 0

]′ [
1
C4
Cp 0

]
, and R = k2

u.

We can also consider the H2 control objective where we seek to minimize, in the H2 sense,

the weighted sum of velocity and the control signal in response to a specific disturbance

I1, i.e. we seek to minimize

J =
∥∥∥∥ν(s) + kuVz(s)

I1(s)

∥∥∥∥
2

. (5.21)

This specification is easily cast as a standard H2 problem by considering the modified

plant G̃ shown in Figure 5.13. Minimizing (5.19) is now equivalent to minimizing

J =
∥∥∥∥ z(s)w(s)

∥∥∥∥
2

, (5.22)

where the modified plant model is that of (5.16) with a non-zero D matrix,

D̃g =

 0 ku

0 0

 . (5.23)

5.3.4 Admittance Synthesis

Referring to Figure 5.10, the shunted electromechanical system can be regarded as a typical

feedback control system where a disturbance I1 results in a vibration characterized by the

velocity ν(t).
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Figure 5.13: The modified plant model required for H2 impedance synthesis.

Due to the improper transfer function from the applied current Iz to the voltage Vz, we

cannot directly apply, as in Section 5.3.3, the standard state-space design methodologies.

To overcome this difficulty, we introduce the notion of a current fluxion amplifier.

As opposed to a regular current amplifier that drives an output current proportional to

the applied reference signal, a current fluxion amplifier, as its name suggests, drives a

current-rate-of-change proportional to the applied reference signal. Figures 5.14 (a) and

(b), compare the operation of a current and current fluxion amplifier. Where the current

amplifier in Figure 5.14 (a) has a gain of 1 A/V , the current fluxion amplifier in Figure

5.14 (b) has a gain of 1 As−1/V . Such an amplifier, when connected to an electromagnetic

coil, can also be viewed as a self-induced-voltage amplifier, the voltage drop across the

transducer’s self inductance is proportional to the derivative of current.

In practice, to avoid the large low frequency gains associated with integration, the current

fluxion amplifier is best implemented by controlling the voltage across a sensing inductance

Ls and resistance Rs. In this case, the current fluxion amplifier includes some internal

dynamics as shown in Figure 5.14 (c). The resistance results in a limited gain at low

frequencies. More details on the practical implementation of a current fluxion amplifier

can be found in Section 5.4.2.



146 5. Electromagnetic Shunt Control

1

L Rss s

u

u

1u zI(a)

(b)

(c)

zIs

zIs
s

Figure 5.14: A unity gain current amplifier (a), a unity gain current fluxion

amplifier (b), and a current fluxion amplifier with internal dynamics (c).

When dealing with a current fluxion driven transducer, the modified composite system is

as shown in Figure 5.15 (a). By concatenating the transfer functions of coil impedance

and amplifier dynamics, the resulting generalized plant model as shown in Figure 5.15 (b),

is proper.

Inadvertently, by solving the problem associated with the improper coil impedance, we

have also achieved a better conditioning of the transfer function from the command input

to Vz. The dynamic range of this response was previously dominated by the coil impedance,

but when driving the coil with current fluxion rather than current, the dynamic range is

almost solely dependent on the mechanical response. As will become clearer in Section

5.4, this characteristic affords a more accurate estimation of the structural state.

In order to apply standard synthesis techniques such as LQR, we require a minimal state

space model representing the current fluxion driven composite system. By defining the

following state-space model for the concatenated coil impedance and amplifier dynamics
Ls+R
Lss+Rs

,

ẋz(t) = Azxz(t) +BzV3(t) (5.24) Vc(t)

Iz(t)

 =

 Cz1
Cz2

xz(t) +

 Dz1
0

V3(t),

where, Az =
[
−Rs
Ls

]
, Bz = [1], Cz1 =

[
R
Ls

− RsL
L2

s

]
, Cz2 =

[
1
Ls

]
, Dz1 =

[
L
Ls

]
, a state-space
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model can be derived for the composite system G. Vc is the voltage dropped across the

internal impedance of the transducer,

ẋg(t) = Agxg(t) +Bg

 I1(t)

V3(t)

 (5.25)

 ẋ(t)

Vz(t)

 = Cgxg(t) +Dg

 I1(t)

V3(t)

 ,

where,

xg(t) =

 xp(t)

xz(t)

 , Bg =

 BpC1C4 0

0 Bz

 , Dg =

 0 0

0 −Dz1

 (5.26)

Ag =

 Ap −BpCz2C3C4

0 Az

 , Cg =

 Cp 1
C4

0

Cp −Cz1

 . (5.27)

Our design objective is to minimize the velocity ν(t), whilst, as opposed to restraining the

control signal V3(t), it remains of interest to limit the magnitude of the terminal voltage

Vz. In a linear quadratic sense, the objective is to minimize

J =
∫ ∞

−∞

[
ν2(t) + (kyVz(t))

2
]

dt, (5.28)

where ky is the weighting on the terminal voltage Vz. This specification can be cast as a

standard LQR problem by considering the modified plant G̃ shown in Figure 5.16. The

state-space representation of which is

ẋg(t) = Agxg(t) +Bg

 w(t)

u(t)

 (5.29)

 z(t)

y(t)

 = C̃gxg(t) + D̃g

 w(t)

u(t)

 ,

where,

C̃g =

 C̃g1
C̃g2

 =

 [ Cp 1
C4

0
]
+ ky

[
Cp −Cz1

]
[
Cp −Cz1

]
 , (5.30)



5.3 Control Design 149

w

u

z

y

C(s)

G

k y

V zV 3

G

I 1 ν

Figure 5.16: The modified plant model required for admittance synthesis.

D̃g =

 D̃g11 D̃g12

D̃g21 D̃g22

 =

 [ 0 0
]
+ ky

[
0 −Dz1

]
[
0 −Dz1

]
 .

Minimizing (5.28) is now equivalent to minimizing

J =
∫ ∞

−∞
z2(t) dt (5.31)

=
∫ ∞

−∞

[
C̃g1xg(t) + D̃g12u(t)

]′ [
C̃g1xg(t) + D̃g12u(t)

]
dt (5.32)

=
∫ ∞

−∞

[
x′g(t)C̃

′
g1C̃g1xg(t) + u′(t)D̃′

g12D̃g12u(t) + 2x′g(t)C̃
′
g1D̃g12u(t)

]
dt. (5.33)

Restated, in the standard LQR context,

J =
∫ ∞

−∞

[
x′g(t)Qxg(t) + u′(t)Ru(t) + x′g(t)Nu(t)

]
dt. (5.34)

The corresponding Q, R, and N matrices are,

Q = C̃′
g1C̃g1

R = D̃′
g12D̃g12 (5.35)

N = C̃′
g1D̃g12.

We can also consider the H2 control objective where we seek to minimize, in the H2 sense,

the weighted sum of velocity and the terminal voltage in response to a specific disturbance
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I1, i.e. we seek to minimize

J =
∥∥∥∥ν(s) + kyVz(s)

I1(s)

∥∥∥∥
2

. (5.36)

By considering the modified plant G̃ described in equation (5.29), this specification is

easily cast into a standard H2 synthesis problem. Minimizing (5.36) is now equivalent to

minimizing

J =
∥∥∥∥ z(s)w(s)

∥∥∥∥
2

. (5.37)

5.4 Experimental Results

To verify the modeling and design techniques presented in the preceding sections, each

method has been applied to an experimental electromechanical system.

5.4.1 Electromagnetic Transducer

A photograph of the electromagnetic transducer showing the rigid body, flexible end sup-

ports, mounting plate, and coils is provided in Figure 5.17. The apparatus is essentially a

translational solenoid with two identical fixed coils and a magnetic plunger supported at

either end by flexible disks. A side section including dimensions and magnetic orientations

is shown in Figure 5.18.

The coils are wound from 0.25 mm diameter enamel coated copper wire and have an

electrical impedance of 3.3 Ω + 1 mH. In order to prevent distortion of the magnetic

flux field, only non-magnetic materials, such as aluminum and copper, were used in the

construction of the rigid body, flexible end supports and mounting plate.

In practice, the magnetic field strength, as well as being a function of the magnetic ma-

terial, is limited by the maximum allowable dimensions and weight of the magnets. In

these experiments, three rare earth magnets (Neodymium Iron Boron), are arranged to

form the magnetic plunger as shown in Figure 5.18. At the two points where opposing

poles meet (at the center of each winding), a strong magnetic field exits at right angles to

the plunger. When the plunger is in motion, the strong parallel field flowing through the
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Parameter Value

Spring constant K 56 kNm−1

Damping coefficient C 2.667 Nsm−1

Plunger mass M 0.150 kg

Electromagnetic Coupling C1 3.55

Electromagnetic Coupling C2 4.06

Electromagnetic Coupling C3 3.55

Electromagnetic Coupling C4 4.06

Coil Inductance L 1 mH

Coil Resistance R 3.3 Ω

Table 5.1: Electromechanical system parameters.

coil results in a high flux density and correspondingly large induced voltage. The physical

parameters of the electromagnetic and mechanical systems are summarized in Table 5.1.

The plunger velocity is measured using a PSV-300 Polytec Scanning Laser Vibrometer.

5.4.2 Power Amplifier and Instrumentation

In order to implement the arbitrary shunt impedance and admittances resulting from

the control design, a power amplifier was developed capable of driving either differential

terminal voltages or load current fluxions. During either mode of operation, the device is

also capable of instrumenting the respective load current or terminal voltage.

The simplified schematic of two circuits realizing each mode of operation are shown in

Figures 5.19 (a) and (b). Both circuits incorporate a high gain feedback loop to control

either the measured load or sensing impedance voltage.

In Figure 5.19 (a), within the high frequency bandwidth of the control loop, the reference

potential Vref appears across the load, i.e. we have a unity gain voltage amplifier. The
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Figure 5.17: An external photograph of the experimental electromagnetic appa-

ratus.
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I z

Z

V z
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Figure 5.18: Side section of the experimental electromagnetic apparatus. All

dimensions are in millimeters (mm).
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additional resistance and differential amplifier generate the current measurement VR with

gain Rs V/A.

In Figure 5.19 (b), within the high frequency bandwidth of the control loop, the reference

potential Vref appears across the sensing impedance Lss + Rs, thus, the resulting load

current is described by

IL(s)
Vref (s)

=
1

Lss+Rs
(5.38)

≈ 1
Lss

.

Neglecting the resistance Rs, the amplifier can be thought of as an integrator connected

in series to the reference of a current source (with gain 1
Ls

A/V ). Alternatively, as it

is defined in this paper, we could also refer to the device as a current fluxion amplifier

(with gain 1
Ls

As−1/V ) where the reference signal Vref commands the rate of change in

load current. The parasitic coil resistance Rs is beneficial and effectively limits the low

frequency gain of the amplifier eliminating the normal practical problems associated with

integration. The following in-bandwidth transfer function of the current fluxion amplifier

is determined by the parameters of the sensing inductor,

sIL(s)
Vref (s)

=
s

Lss+Rs
. (5.39)

A practical implementation of a combination voltage and current fluxion amplifier is shown

in Figure 5.20. The device is capable of +/- 250 V operation at a maximum DC current

of 32 Amps. Further analysis and a more detailed discussion of the implementation can

be found in Chapter 3.

A dSpace 1005 based system is used to implement the required impedance and admittance

transfer functions.

5.4.3 Impedance Synthesis

Figure 5.21 shows the instrumentation and driver gains associated with the underlying

electromechanical system. The voltages V1 through V4 represent the signals applied to, or

measured from, the power amplifiers and instrumentation. The gain and units associated
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Figure 5.19: The simplified schematic of a differential voltage feedback amplifier

(a), and current fluxion feedback amplifier (b).
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Figure 5.20: Implementation of a voltage and current fluxion amplifier.

with each signal can be found in Table 5.2. The actual electrical shunt impedance presented

to the coil is related to the controller through the gains k3 and k4, specifically,

Zc(s) =
Vz(s)
Iz(s)

= k3C(s)k4. (5.40)

To assess the accuracy of the analytic model (discussed in Section 5.2.3), the simulated

frequency response is compared to that measured directly from the experimental system.

Gain Value

k1 1 A/V

k2 40 V/ms−1

k3 −4 V/V

k4 10 V/A

Table 5.2: External gains associated with the shunt voltage controlled electro-

magnetic system.
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Figure 5.21: Open-loop external gains of the shunt voltage controlled electro-

magnetic system.

A multivariable frequency response is measured successively from each input to output

pair. During the component SISO frequency response measurements, the residual input

is set to zero. The magnitude and phase frequency responses are shown respectively in

Figures 5.22 and 5.23. In the frequency domain, a good correlation can be observed

between the analytic model and measured system.

LQR Impedance Synthesis

As discussed in Section 5.3.3, a linear quadratic regulator can be designed to command the

shunt terminal voltage Vz with a view to regulating a performance signal consisting of the

weighted sum of plunger velocity and control signal. An observer is required to estimate

the system states from the measured shunt current Iz. Once designed, the concatenation

of the observer and LQR gain matrix results in a system, interpreted as an active shunt

impedance, that can be applied to one of the electromagnetic coils in order to reduce

structural vibration.

Based on the physical model (including external gains) that was validated in the previous

sub-section, and referring to the notation introduced in Section 5.3.3, an LQR gain matrix

was designed to minimize the following performance function,

J =
∫ ∞

−∞

[
(k2ν(t))

2 +
(
7
k3

Vz(t)
)2
]

dt, (5.41)
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Figure 5.22: The simulated (—), and experimental (- -), magnitude frequency

response (in decibels) of the shunt voltage controlled electromagnetic system.
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Figure 5.23: The simulated (—), and experimental (- -), phase frequency re-

sponse (in degrees) of the shunt voltage controlled electromagnetic system.
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where the factor 7 represents the relative control weighting. The gains k2 and k3 are

included as the design is based on the input-output model which includes the amplifier

and instrumentation dynamics. The observer was designed by pole placement, where the

target poles were chosen as that of the closed-loop system with real components multiplied

by 2. As is routine in control system design, the control weighting of 7 and observer pole

locations were chosen experimentally to achieve a reasonable trade-off between damping

performance, robustness, and the control signal magnitude.

The complex impedances of the implemented LQR and ideal negative inductor-resistor

controller are plotted in Figure 5.24. It can be observed that at frequencies close to the

resonance of the system, 92 Hz, the impedance of the LQR designed controller closely

resembles that of the ideal negative inductor-resistor controller. Beneficially, the LQR

designed impedance is proper, has a limited bandwidth, and exerts control effort only at

frequencies close to the resonance of the system (which can be deduced from the following

closed-loop performance plots).

The damping performance of the LQR controller was assessed in both the frequency and

time domains. With the controller in the loop, a disturbance current I1, proportional

to a force disturbance, is applied to the system. Experimental and simulated open- and

closed-loop frequency responses are shown in Figure 5.25. The controller was measured to

reduce the resonant peak by 19.4 dB. The corresponding time domain velocity response to

a 300 Hz low-pass filtered step change in disturbance current I1 is shown in Figure 5.26.

The simulated closed-loop step response was obtained by recording the applied step signal

and applying it in simulation to the closed-loop model. The action of the controller can be

further understood by observing the open- and closed-loop pole locations shown in Figure

5.27. Disregarding the observer poles, the controller has acted to increase system damping

by shifting the associated poles further into the left half plane. The pole corresponding to

the coil admittance remains effectively unchanged.
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Figure 5.24: Complex impedance of the LQR (—) and ideal negative inductor-

resistor controller (- -).
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Figure 5.25: The experimental (—) and simulated (- -), open- and closed-loop

frequency response from an applied disturbance current I1 (A) to the resulting

plunger velocity ν (ms−1) for the LQR impedance controlled system. The open-

loop frequency response is also shown (—).
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Figure 5.26: Velocity response ν (ms−1) of the LQR impedance controlled

system to a step disturbance current I1. (a) experimental open-loop, (b) closed-

loop (b), and (c) simulated closed-loop.
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Figure 5.27: The open- (©) and closed-loop (×) pole locations of the LQR

impedance controlled system.
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H2 Impedance Synthesis

In analogy to Section 5.4.3, and as discussed in Section 5.4.3, this sub-section documents

the implementation of an active shunt impedance designed to minimize the H2 norm of

the transfer function between a disturbance current I1 and a performance signal z. As

in Section 5.4.3, the performance signal consists of the weighted sum of plunger velocity

and control signal. Specifically, for the electromagnetic system including external gains,

we seek to minimize:

J =

∥∥∥∥∥k2ν(s) + ku
k3
Vz(s)

I1(s)/k1

∥∥∥∥∥
2

, (5.42)

where ku is the control signal weighting.

For the plant under consideration, the H2 problem is well defined and feasible. All of the

standard requirements are met, i.e. the plant is minimal, proper, controllable, observable,

and of finite dimension. However, in order to find a solution using existing tools, i.e.

the algebraic Riccati solution implemented by the µ-Synthesis Toolbox for Matlab c©, the

system must meet some additional requirements. The most problematic of which, is the

requisite full rank condition on the standard plant matrices D21 and D12. In this case,

where each of the signals w, u, y, and z are uni-dimensional, this condition requires that

the feed-through term from w to y, and u to z, is non-zero. As the performance signal

z already contains a direct weighting on the control signal Vz, the only condition not

met is that on D21. To overcome this problem, for the purpose of controller synthesis,

we include an artificial feed-through term D21. We now have two design parameters: ku

and D21. These were chosen to be 0.1 and 1 respectively. Our experience indicates that

both parameters tend to have a similar effect on the controller bandwidth and closed-loop

performance. As either is decreased, the controller bandwidth and closed-loop damping

increases.

The electrical shunt impedance of the resulting H2 controller is shown in Figure 5.28. Un-

like the complex impedance of the LQR controller shown in Figure 5.24, theH2 impedance

shows a closer resemblance to the ideal negative inductor-resistor over a wide frequency

band. Under the same test conditions as discussed in Section 5.4.3, the resulting damp-
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Figure 5.28: Complex impedance of the H2 (—) and ideal negative inductor-

resistor controller (- -).

ing performance of the H2 controller is illustrated by the closed-loop frequency response,

step response, and pole locations shown in Figures 5.29, 5.30, and 5.31 respectively. The

damping performance of the H2 controller, measured to be 19.25 dB, is slightly inferior to

that obtained for the LQR controller in Section 5.4.3. One of the characteristics of the H2

controller was that it resulted in a bandwidth greater than the LQR controller designed

to obtain a similar performance. The poor correlation with the simulated response may

be attributable to the problems involved in implementing such a high bandwidth con-

troller. For real-time implementation using the Runge-Kutta analog solver, the sampling

delay associated with analog to digital conversion and vice versa results in a significant

unmodeled phase delay at frequencies approaching to the Nyquist rate. In addition, at

such frequencies, the actual impedance presented to the coil is a series concatenation of

the implemented transfer function and the high frequency low-pass dynamics of the power

amplifier.
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Figure 5.29: The experimental (—) and simulated (- -), open- and closed-loop

frequency responses from an applied disturbance current I1 (A) to the resulting

plunger velocity ν (ms−1) for the H2 impedance controlled system. The open-loop

frequency response is also shown (—).
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Figure 5.30: Velocity response ν (ms−1) of the H2 impedance controlled system

to a step disturbance current I1. (a) experimental open-loop, (b) closed-loop (b),

and (c) simulated closed-loop.
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impedance controlled system.
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Figure 5.32: Open-loop external gains for the shunt current controlled electro-

magnetic system.

5.4.4 Admittance Synthesis

Figure 5.32 shows the instrumentation and driver gains associated with the underlying

electromechanical system. The voltages V1 through V4 represent the signals applied to, or

measured from the power amplifier and instrumentation. The gain and units associated

with each signal can be found in Table 5.3. The actual electrical shunt admittance pre-

sented to the coil is related to the controller designed for such a system through the gain

k4 and the dynamics of the current fluxion amplifier. It can be shown that,

Yc(s) =
Iz(s)
Vz(s)

=
1

Lss+Rs
C(s)k4. (5.43)

The controller C(s) can be likened to the approximation of an admittance derivative, i.e.

C(s) ≈ sLsYc(s)
k4

. (5.44)

In this section, rather than considering only the physical variables such as current, voltage,

and velocity etc., we now consider the reference current fluxion V3(s), in preference to Iz(s).

The magnitude and phase frequency responses are shown respectively in Figures 5.33 and

5.34. In the frequency domain, a good correlation can be observed between the analytic

model and measured system.
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Gain Value

k1 1 A/V

k2 40 V/ms−1

Ls 466 µH

Rs 1.1065 Ω

k4 1.77 V/V

Table 5.3: External gains associated with the shunt current controlled electro-

magnetic system.
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Figure 5.33: The simulated (—), and experimental (- -), magnitude frequency

response (in decibels) of the shunt current controlled electromagnetic system.
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Figure 5.34: The simulated (—), and experimental (- -), phase frequency re-

sponse (in degrees) of the shunt current controlled electromagnetic system.

LQR Admittance Synthesis

In analogy to Section 5.4.3, and as discussed in Section 5.3.4, a linear quadratic regulator

can be designed to command the shunt current fluxion V3 and hence the current Iz.

Although Vz now appears as an output, it remains in our interest to weight this signal

as a component of the performance objective. The connection of the coil and amplifier

discussed in Section 5.4.2 has an operational range constrained only by the magnitude of

the output voltage.

Based on the physical model (including external gains) that was validated in the previous

sub-section, an LQR gain matrix was designed to minimize the following performance

function,

J =
∫ ∞

−∞

[
(k2ν(t))

2 +
(
ky
k4

Vz(t)
)2
]

dt, (5.45)

where the factor ky represents the relative weighting on the measured output voltage

Vz. Even though the control and measurement variables differ from the impedance based
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design in Section 5.4.3, the performance objective remains the same. In Section 5.3.4,

equation (5.45) is cast as a standard LQR performance objective. Following the design of

a gain matrix (for ky = 0.5), an observer was designed following the same technique as in

Section 5.4.3, the poles were chosen with a real component twice that of the closed-loop

system poles.

The frequency response of the resulting LQR shunt admittance is shown in Figure 5.35.

Like the H2 impedance designed and implemented in Section 5.4.3, the complex admit-

tance of the LQR controller closely resembles that of the ideal negative inductor-resistor

controller at low frequencies. As the frequency increases, the response can be likened to a

small and decreasing negative real valued admittance.

The closed-loop response of the LQR controller shown in Figures 5.36 and 5.37 shows a

significant peak damping of 20.6 dB, this closely resembles that predicted in simulation.

The general coherence between the simulated and experimental results is likely due to

the tendency of the LQR admittance to have a significantly lesser bandwidth than that

experienced with the impedance controllers of Sections 5.4.3 and 5.4.3. As the admittance

of the ideal negative inductor-resistor is low-pass compared to the impedance which has an

infinite bandwidth, the characteristic of lesser control bandwidth when implementing an

admittance follows naturally. In addition, the increase in relative dynamic range associated

with the transfer function from V3 to Vz contributes to a more accurate state estimate and

better correlation with simulated results.

The simulated pole locations of the closed-loop system are shown in Figure 5.38. As

expected, due to the explicit specification of observer poles, the closed-loop pole-zero maps

for both the LQR admittance and impedance controlled systems are extremely similar.
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Figure 5.35: Complex admittance of the LQR (—) and ideal negative inductor-

resistor controller (- -).
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Figure 5.36: The experimental (—) and simulated (- -), open- and closed-loop

frequency responses from an applied disturbance current I1 (A) to the resulting

plunger velocity ν (ms−1) for the LQR admittance controlled system. The open-

loop frequency response is also shown (—).
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Figure 5.37: Velocity response ν (ms−1) of the LQR admittance controlled

system to a step disturbance current I1. (a) experimental open-loop, (b) closed-

loop (b), and (c) simulated closed-loop.
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Figure 5.38: The open-(©) and closed-loop (×) pole locations of the LQR

admittance controlled system.
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H2 Admittance Synthesis

This sub-section documents the implementation of an active shunt admittance designed

to minimize the H2 norm of the transfer function from a disturbance current I1 to a

performance signal z. In analogy to LQR admittance design, the H2 performance function

remains unchanged from H2 impedance synthesis. i.e.

J =

∥∥∥∥∥k2ν(s) +
ky

k3
Vz(s)

I1(s)/k1

∥∥∥∥∥
2

, (5.46)

where ky is the weighting on Vz.

Again, for the plant under consideration, the H2 problem is well defined and feasible.

All of the standard requirements are met, i.e. the plant is minimal, proper, controllable,

observable, and of finite dimension. However, in order to find a solution using existing

tools, i.e. the algebraic Riccati solution implemented by the µ-Synthesis Toolbox for

Matlab c©, the system must meet some additional requirements. The most problematic

of these requirements is the requisite full rank condition on the standard plant matrices

D21 and D12. In this case, where each of the signals w, u, y, and z are uni-dimensional,

this condition requires that the feed-through term from w to y, and u to z, is non-zero.

As both of the plant outputs already contain a direct feed-through from V3, (due to the

existence of ky), the only condition not met is that on D21. To overcome this problem,

for the purpose of controller synthesis, we include an artificial feed-through term D21.

We now have two design parameters: ky and D21. These were chosen to be 0.17 and 0.6

respectively.

The electrical shunt impedance of the resulting H2 controller is shown in Figure 5.39.

The damping performance of the H2 controller is assessed from the closed-loop frequency

response, step response, and pole locations, as shown in Figures 5.40, 5.41, and 5.38

respectively. Attenuation of the resonant peak was measured to be 19.65 dB.
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Figure 5.39: Complex admittance of the H2 (—) and ideal negative inductor-

resistor controller (- -).
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Figure 5.40: The experimental (—) and simulated (- -), open- and closed-loop

frequency responses from an applied disturbance current I1 (A) to the resulting

plunger velocity ν (ms−1) for theH2 admittance controlled system. The open-loop

frequency response is also shown (—).
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Figure 5.41: Velocity response ν (ms−1) of theH2 admittance controlled system

to a step disturbance current I1. (a) experimental open-loop, (b) closed-loop (b),

and (c) simulated closed-loop.
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Figure 5.42: The open- (©) and closed-loop (×) pole locations of the H2

admittance controlled system.



174 5. Electromagnetic Shunt Control

5.4.5 Discussion

For the practitioner, when confronted with the various options for shunt control of an

electromagnetic system, the obvious questions are: “which is the easiest to implement

?”, and “which provides the best performance ?”. Although there is of course no general

answer to either of these questions, we wish to highlight some important characteristics

raised throughout this chapter. All of the synthesized LQR and H2 controllers tend to

resemble the complex impedance of an ideal negative inductor-resistor over some frequency

band. Correspondingly, and as it occurs in practice, the impedance based controllers tend

to be of a higher bandwidth and more difficult to implement. Thus, the technique of shunt

admittance control is recommended. To this end, a current fluxion amplifier is required.

Although such a device is no more difficult to construct than a typical voltage feedback

amplifier, at present, they are commercially unavailable.

As there is no direct measurement of the plunger velocity, one would expect the perfor-

mance of a shunt controlled system to be lesser than a fully instrumented active feedback

system. Better performance is typically obtained for systems with a large dynamic range

in the transfer function from an applied control signal to the measured variable. Work is

continuing on the design of transducers with strong electromagnetic coupling coefficients,

and hence, a greater dynamic range in the impedance transfer function.

Another issue associated with electromagnetic shunt control is that of negative reactive

components. All of the impedance and admittance transfer functions contained right-

half plane poles. Such an impedance can only be represented by a circuit comprising at

least one of: negative resistors, negative capacitors, or negative inductors. Although the

connection of the coil and control impedance is stable, an inherently stable controller is

desirable.

5.5 Conclusions

Electromagnetic transducers have been employed extensively in active vibration control

systems as force actuators, velocity sensors, or both. Compared to other transducers such



5.5 Conclusions 175

as piezoelectric materials and shape memory alloys, their large stroke, physical robustness,

high bandwidth, and low-cost render them useful in a wide range of applications.

The connection of an electrical impedance or admittance to the terminals of an electro-

magnetic coil is equivalent to implementing a standard feedback controller around the

mechanical system. By revealing the underlying feedback structure and casting it as a

typical MIMO control problem, an impedance or admittance can be found that minimizes

some arbitrary performance objective.

No external sensor is required to implement the control loop. This significantly reduces

the cost, complexity, and sensitivity to transducer failure that in many applications, may

preclude the use of an active control system.

The presented techniques are successfully applied to the design and implementation of

an LQR and H2 based, active impedance and admittance controller. Without the need

for any external sensors, the resonant peak of an experimental single-degree-of-freedom

system was substantially reduced in magnitude by up to 20.6 dB.

Current and future work involves both the exploration of additional applications and

development of the control theory associated with the synthesis step. A priority is the

inclusion of uncertainty in the mechanical plant model with consideration during the

synthesis process to achieve robust stability and performance objectives. For practical

reasons it may also be desirable to enforce strictly-positive-realness (passivity) on the

synthesis result. It is expected that without negative reactive components the achievable

performance will be somewhat lesser.
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6

Spatial System Identification

In the analysis and control of distributed parameter systems it is of great benefit to

possess a spatial model. That is, a model that describes system dynamics over an entire

spatial domain. This chapter is concerned with the spatial system identification of flexible

structures.

6.1 Introduction

The motivation for finding a spatial model lies in both the fields of analysis and synthesis.

During analysis the user may simply wish to observe the mode shapes of the structure, or

in a more complete utilization of the model, mathematically estimate the spatial feedback

control performance of a system utilizing discrete sensors, actuators, and control objec-

tives. For example, consider reference [52] where a standard H∞ controller [109, 130] is

designed to minimize vibration at a single point on a piezoelectric laminate simply sup-

ported beam. A spatial model is required to analyze the overall performance of such a

controller. The fact that a point-wise controller is shown to provide good local perfor-

mance but poor spatial performance leads us to the primary application of spatial models -

spatial controller synthesis. A number of standard control synthesis variants have emerged

that address the control design of spatially distributed systems with discrete sensors and

actuators. Recent examples include: spatial feed forward control [90], spatial resonant

control [51], spatial H2 control [53], and spatial H∞ control [52].

The modal analysis procedure has been used extensively throughout the literature for
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obtaining spatial models of structural [85, 41] and acoustic systems [55]. Its major disad-

vantage is the requirement for detailed physical information regarding the sensors, actu-

ators, and underlying mechanical system. Practical application typically involves the use

of experimental data and a non-linear optimization to identify unknown parameters, such

as modal amplitudes, resonance frequencies and damping ratios. Even in this case, the

descriptive partial differential equations must still be solved (as functions of the unknown

parameters) to obtain the mode shapes. This may be difficult or impossible for realistic

structural or acoustic systems with complicated boundary conditions.

Another popular technique for obtaining spatial models is that of finite element (FE)

analysis [26]. This is an approximate method that results in high order spatially discrete

models. If the dynamics of sensors and actuators are known, the integrated model can be

cast in a state-space form to facilitate control design and analysis [75]. The approximate

nature of finite element modeling eliminates the need for solving descriptive partial differ-

ential equations. Detailed information regarding the structures’ material properties and

boundary conditions is still required. As with the modal analysis procedure, FE models

are usually tuned with experimental data [35].

A considerable literature has also developed on the topic of Experimental Modal Analy-

sis, (see [79] for a compilation of such methods). These methods can be predominantly

described as frequency domain transfer function methods. The system is assumed to con-

sist solely of parallel second order resonant sections. Sensor, actuator, and additional

non-modal dynamics are neglected. One of the most popular methods, widely used in

commercial frequency domain modal analysis packages, is the rational fraction polynomial

method [79]. As a transfer function method, the model is poorly conditioned, incorrectly

describes the system zero dynamics [92], and neglects non-modal dynamics.

All of the mentioned experimental modal analysis techniques neglect the fundamental

limitations in spatial sampling, i.e. the reconstructed mode shapes can be distorted due

to violation of the Nyquist criterion spatially in one or two dimensions.

This chapter introduces an efficient and correct method for identifying the above class of

systems directly from measured frequency response data.
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6.2 Modeling

The Lagrangian/modal expansion, or Ritz-Kantorovitch method [85], is commonly used to

express the spatial deflection of a distributed parameter system as an infinite summation

of modes. The modes are a product of two functions, one of the spatial co-ordinate vector

r, and another of the temporal t,

d (r, t) =
∞∑
i=1

qi (t)φi (r) , (6.1)

where the qi(t)s are the modal displacements, the φi (r)s are the system eigenfunctions,

d (r, t) is the displacement at a point, and r ∈ R is a co-ordinate vector on the spatial

domain R. The mode shapes φi(r) must form a complete coordinate basis for the system,

satisfy the geometric boundary conditions, and for analytic analysis be differentiable over

the spatial domain to at least the degree required by the describing partial differential

equations. Many practical systems also obey certain orthogonality conditions.

As discussed in [85] the model (6.1) can also be expressed in the frequency domain as

Gy (r, s) =
∞∑
i=1

Fiφi (r)
s2 + 2ζiωis+ ω2

i

, (6.2)

where Gy(r, s) is the transfer function from an external force, or for the system considered

in this chapter, the applied piezoelectric voltage to the displacement at a point r.

For practical reasons, (6.2) is often truncated to include only a certain number of modes

that approximate the response over a limited bandwidth. Reference [92] introduces a model

reduction technique for systems that satisfy certain modal orthogonality conditions. The

following truncated model structure is proposed,

G̃y (r, s) =
N∑
i=1

Fiφi (r)
s2 + 2ζiωis+ ω2

i

+
∞∑

i=N+1

kiφi (r) , (6.3)

where, (referring to [92]), the ki terms are found by minimizing the spatial H2 norm of

the resulting error system, (ωc is the retained bandwidth),

ki =
Fi

2ωcωi
ln
(
ωi + ωc
ωi − ωc

)
. (6.4)
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We define the model of a general single input spatially distributed system as

Ĝy (r, s) = H (s)

[
N∑
i=1

Φi (r)
s2 + 2ζiωis+ ω2

i

+D (r)

]
, (6.5)

where H(s) is the concatenation of all non-distributed transfer functions, Φi(r) is the

ith mode shape incorporating the modal gainFi, and D(r) is the feed-through function

included to compensate for all higher order truncated contributions to zero dynamics.

The filter H(s) is used to model the additional dynamics of sensors, actuators, and for

example, anti-aliasing filters. In this work H(s) is not identified automatically.

The objective will be to identify the parameters θ =
[
Φi(r) D(r) ζi ωi

]
from a

number of measured spatially distributed point-wise frequency responses,

Gy (jω, r)
r∈{r1, . . . , rNr} ∈ R
ω∈{ω1, . . . , ωNω} ,

(6.6)

where Nr is the number of measured spatial locations and Nω is the number of measured

frequency points per location.

The system (6.5) has a corresponding state space representation:

ẋ(t) = Ax(t) +Bu(t) (6.7)

d(r, t) = C(r)x(t) +D(r)u(t),

where C(r) =
[
Φi(r) 0 · · · ΦN (r) 0

]
, B =

[
0 1 · · · 0 1

]T
, D(r) is a scalar

function of r, N is the number of modes to be identified, and

A =



0 1 0 0

−ω2
1 −2ζ1ω1 0 0

. . .

0 0 0 1

0 0 −ω2
N −2ζNωN


∈ R2N×2N . (6.8)

6.3 Spatial Sampling

Considering the model structure (6.5), the spatial functions Φi(r) and D(r) must be recon-

structed from their identified samples. For a uniformly sampled one-dimensional system,
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the samples of our continuous functions Φi(r) and D(r) are

Φi (r)

D (r)

r = n ∆r ∈ R
n ∈ {0, 1, ..., Nr} ,

(6.9)

where the scalar r specifically denotes a one-dimensional system and ∆r is the spatial

sampling interval.

There are a number of options available for reconstructing the continuous functions, two

of which are traditional linear reconstruction and spline reconstruction. The following two

subsections, 6.3.1 and 6.3.2, examine the application of each technique to the two cases

of band-limited and non-band-limited functions. The aim is to quantify the expected

mean square difference between the original continuous function and its corresponding

reconstruction. This will allow us to evaluate the required spatial sampling interval as a

function of the permissible error. An example of this procedure is performed for a simply

supported beam in Section 6.3.3.

6.3.1 Whittaker-Shannon Reconstruction

The discrete magnitude spectra of a band-limited spatial function f(r) is shown in Figure

6.1. To satisfy the Nyquist sampling criterion, the spatial sampling frequency 2π
∆r (in

rad
m ) must be greater than twice the highest frequency component of f(r) [63]. Shannon’s

Reconstruction Theorem states that f(r) can be reconstructed from its samples,

f(r) = ∆r
∞∑

k=−∞
f(k∆r)

sin
(
π

∆r (r − k∆r)
)

π(r − k∆r)
. (6.10)

Theoretically, a perfect reconstruction is possible, however, in practice, there are two

significant sources of degradation:

1. For finite time signals, truncating the summation (6.10) introduces a systematic

truncation error. Expressions for bounding the truncation error and references to

relevant work can be found in [63].

2. In many practical situations the samples will also contain an additive stochastic dis-

turbance. An expression for the mean integral squared reconstruction error (MISE)
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Figure 6.1: Discrete magnitude spectra of an over sampled band-limited function.

experienced when recovering a signal from its corrupted samples can be found in

[98]. It is also shown that Shannon reconstruction is not a consistent estimator for

band-limited signals recovered from noisy samples, i.e. as the number of signal sam-

ples approaches ∞, the MISE does not approach zero, in fact the error diverges and

also approaches ∞. Convergent estimators for such scenarios can be found in [99]

and [70].

In general, the spatial function f(r) will not be band-limited. Examples include but are

not limited to, the mode shapes of a cantilever beam [41], and the feed-through function

for a simply supported beam [92]. Since the samples are obtained indirectly from point-

wise frequency response data, no form of low-pass filtering is possible. The objective of the

following will be to quantify the under-sampling error as a function of the spatial sampling

interval.

In their paper reviewing sources of error in linear reconstruction, Thomas and Liu [111]

present an expression for the mean square reconstruction error as a function of the power

spectral density outside the Nyquist range. The following expression assumes an absence

of the optimal low-pass filter, which in our application, cannot be applied to the continuous

signal,

||f(r)−Qs f(r)||2 =
[
1
π

∫
|ωr|> π

∆r

|F (jωr)|2 dωr

] 1
2

, (6.11)

where Qsf(r) is the Shannon representation of the sampled function, ωr is the spatial
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frequency in radians per meter and |F (jωr)|2 is the power spectral density of f(r). In the

case where the optimal pre-filter can be applied, the RHS1 of equation 6.11 is reduced by

one half.

6.3.2 Spline Reconstruction

In recent years, splines have been recognized for their usefulness in curve and surface

fitting problems [71, 112]. A function f(r) can be approximately reconstructed from a

spline basis ϕ(r), with coefficients c(k) derived from f(k∆r),

sp

Qn f(r) =
∑
k∈Z

c(k)ϕn(
r

∆r
− k), (6.12)

where c(k) ∈ l2 are the (finite square summable) spline coefficients,
sp

Qn f(r) is the spline

reconstruction of f(r) and ϕn(r) is the spline generating function. We will limit our choice

of generating functions to the nth degree β-splines (of order n + 1) [112]. The condition

c(k) ∈ l2 ensures that
sp

Qn f(r) is a well-defined subspace of L2, the set of square integrable

functions, a considerably larger space than the traditional Shannon space of band-limited

functions. References [113] and [59] present a unified sampling theory for a wide class of

approximation operators. In likeness to the Shannon sampling theorem, the optimal spline

reconstruction involves an optimal pre-filtering of the continuous signal before sampling

and reconstruction by the chosen spline basis. The results in this area, including expres-

sions for the root mean square (RMS) error, are summarized in [112]. The technique of

quantitative Fourier analysis can be applied to quantify the RMS reconstruction error [16].

The sampling phase averaged error is given by,∣∣∣∣∣∣∣∣f(r)− sp

Qn f(r)
∣∣∣∣∣∣∣∣

2

=
[
1
2π

∫ ∞

−∞
|F (jωr)|2 En(∆r ωr) dωr

] 1
2

, (6.13)

where En(∆r ωr) is defined as the frequency error kernel parameterized by the interpolant

and ∆r. Analytic expressions for En(∆r ωr) have been given for the β-splines of order up

to 6 [16].

In our application where there is no access to the continuous signal, we cannot apply the

optimal pre-filter nor achieve the optimal (least squares) fit by projecting our signal onto
1The part of an equation on the right hand side of the equals sign.
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the approximation space [112]. Instead, we shall simply perform an interpolation. The

penalty in doing so is illustrated in Figure 6.2, where the error kernels En(ωr) for spline

and Shannon reconstruction, optimal and interpolation, are shown for ∆r = 1. It can

be observed that although the spline interpolant error is globally greater than that of

the projector, within the Nyquist range |ωr| < π the difference is slight. In analogy to

Shannon reconstruction, for frequencies beyond the Nyquist rate, the magnitude of the

spline interpolant error kernel approaches twice that of the projector.

The spline basis functions also have some interesting variational properties. It is well

known that interpolation by the Shannon basis functions in the presence of truncation error

and/or sample noise, tends to result in an overly ‘peaky’ or oscillatory reconstruction. In

contrast, spline interpolation is the interpolant that oscillates the least (in a certain sense

[105, 112]). Cubic splines are a special case, these interpolants minimize the 2-norm of the

error’s second derivative and hence possess the property of minimum curvature [112]. As

this property is also shared by constrained thin elastic beams and plates, it is natural to

reason that cubic splines may be well suited to approximating mechanical functions, such

as the mode shapes of a simply-supported beam.

In the case of noisy samples, we can achieve some degree of immunity by relaxing the

interpolation condition and imposing a smoothness constraint, i.e. for the cubic splines,

by minimizing

∑
k

(
f(k∆r)−

sp

Qn f(k∆r)
)2

+ λ

∫ L

0

d2
sp

Qn f(r)
dr2

2

, (6.14)

where the second term is a measure of the smoothness. The parameter λ is based on the

additive noise variance [112].

6.3.3 Spatial Sampling of a Simply-supported Beam

This chapter demonstrates how the results presented in Section 6.3.2 can be applied to

spatial systems. We present an example analysis for the simply-supported beam described

in Section 3.3.5. The objective is to arrive at a point where Equations (6.11) and (6.13)

can be applied. Both expressions require only the function’s power spectral density.
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(- -), interpolation (—). Shannon reconstruction (· · · ) E(|ω| > π) = 1, interpola-
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Mode Shapes

The mode shapes of a simply-supported beam are given by [85],

φi(r) =
√

2
ρArL

sin
(
iπr

L

)
(6.15)

= α sin
(
iπr

L

)
, (6.16)

where ρ is the material density, Ar is the cross-sectional area and L is the length of the

beam. The spatial spectra of
∑N
i=1 φi(r) is impulsive and can be easily determined,

F
{

N∑
i=1

φi(r)

}
= jπ

√
2

ρArL

N∑
i=1

[
δ(ωr +

iπ

L
)− δ(ωr − iπ

L
)
]
. (6.17)

The highest frequency component of φi(r), i ∈ {1, . . . , N} is NπL . Thus, if we were to apply

Shannon’s Theorem2 to reconstruct N mode shapes of a simply-supported beam,

2π
∆r

> 2
Nπ

L
, (6.18)

that is,

∆r <
L

N
. (6.19)

This simple and complete result applies in general to a sub-class of the systems (6.2). Such

systems are characterized by sinusoidal mode shapes. Examples include uniform beams

and strings in one dimension, plates in two dimensions and closed acoustic systems in

three dimensions.

The Feed-through Function D(r)

The feed-through function D(r) can be found analytically for systems of the form (6.2),

D(r) =
∞∑

i=N+1

kiφi(r), (6.20)

where φi(r) is given by (6.15) and ki is given by (6.4). We can think of (6.20) as being

equivalent to the Fourier series,

D(r) =
∞∑

i=−∞
cie

j2πir
Tr , (6.21)

2Neglecting truncation errors.
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where Tr = 2L is the period of repetition,

ci =


j
2α

Fi
2ωcωi

ln
(
ωi+ωc
ωi−ωc

)
i ∈ {. . . ,−N − 2,−N − 1}

0 i ∈ {−N, . . . , N}
−j
2 α Fi

2ωcωi
ln
(
ωi+ωc
ωi−ωc

)
i ∈ {N + 1, N + 2, . . . } .

(6.22)

The complex coefficients ci reveal the spatial Fourier transform of D(r),

F {D(r)} = F
{ ∞∑
i=N+1

kiφi(r)

}
(6.23)

=
∞∑

i=−∞
2πciδ(ωr − iωf ), (6.24)

where

ωf =
2π
Tr

=
π

L
. (6.25)

That is,

F {D(r)} =
∞∑

i=−∞
2πciδ(ωr − i

π

L
). (6.26)

Immediately, by the properties of the Fourier transform, we learn some characteristics of

the feed-through function D(r).

1. As verification, F {D(r)} = d(jωr) = d(−jωr)∗ ⇔ Im {D(r)} = 0, which is known

a priori. Also Re {d (jωr)} = 0 and |d (jωr)| are even functions of ωr [100] and

Im{d (jωr)} is an odd function of ωr [100].

2. Since F {D(r)} is purely imaginary, D(r) is an odd function. It is true in general

that Re {d (jωr)} = 0 ⇔ D(r) = −D(−r) [100].

3. D(r) is periodic with period 2L.

As F {D(r)} does not have compact support on the interval (−j∞, j∞), D(r) cannot be

exactly reconstructed from any finite number of samples. It is also obvious from (6.26)

that the spectra of D(r) lies completely outside the bandwidth of the mode shapes, thus

dictating the spatial sampling requirements of the system.
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We can now apply Equation (6.13) to determine the required spatial sampling interval.

For a periodic signal g(r), the energy density per unit frequency is given by [36],

|G(f)|2 = T
∑
n∈Z

|cn|2 δ(f − n
1
T
), (6.27)

where T is the period, G(f) denotes the Fourier transform and cn are the Fourier coeffi-

cients of g(r). By making a change of variables we can find the power spectral density of

D(r),

|F {D(r)}|2 = 2πTr
∑
i∈Z

|ci|2 δ(ωr − i
2π
Tr

). (6.28)

Hence, from equation (6.13), the error in reconstructing D(r) from an nth order spline

basis can be obtained,∣∣∣∣∣∣∣∣D(r)−
sp

Qn D(r)
∣∣∣∣∣∣∣∣

2

=

[
2L
∫ ∞

−∞

(∑
i∈Z

|ci|2 δ(ωr − i
π

L
)

)
En(∆r ωr) dωr

] 1
2

(6.29)

=

[
2L
∑
i∈Z

|ci|2 En(iπ
∆r

L
)

] 1
2

, (6.30)

where
sp

Qn D(r) is the spline reconstruction of D(r). The error kernel for a cubic spline

E3(iπ∆r
L ) is plotted together with the equivalent Shannon kernel in Figure 6.2.

We can also apply Parseval’s equality to find the mean square value of D(r) over one

period,
∞∑

i=−∞
|ci|2 = 1

2L

∫ L

−L
|D(r)|2 dr. (6.31)

We now consider a specific example: the simply-supported beam described in Section 3.3.5,

where 3 modes are retained for identification. The feed-through function resulting from

an analytic model [88] is shown in Figure 6.3. The RMS value of the reconstruction error

(L2 norm on [−L,L]) is plotted against the sampling interval ∆r in Figure 6.4. As the

sampling interval increases, the RMS error approaches the RMS value of the continuous

function3. This plot can be used to select a spatial sampling interval that achieves some

error specification on D(r).
3In this analysis we have considered D(r) /∈ L2. This arises from the periodic nature of the mode

shapes. When we refer to the RMS or mean square value of such signals, we are implicitly referring to the

RMS or mean square value over a single period.



6.3 Spatial Sampling 189

0 0.1 0.2 0.3 0.4 0.5 0.6

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−7

r (m)

D
(r

)

Figure 6.3: Analytic feed-through function for the beam described in Section

3.3.5/

Other Considerations

The above analysis has considered only a one-dimensional system. The Shannon sampling

theorem is easily extended to multi-variate functions [63]. By using tensor-product basis

functions, spline sampling theory is extended in a similar fashion [112]. Both techniques

require an equidistant sampling grid and are based on the application of uni-variate results

in each dimension. For irregular sampling and other complicated reconstructions (e.g. by

blending functions [71], or finite element methods [71]) no such results are known.

In the previous subsection, i.e. Section 6.3.3, the sampling limitations for a simply sup-

ported beam were derived. Even when the mode shapes are known a priori, this analysis

can be difficult to perform. For the practitioner, we offer a rough rule of thumb.

1. Estimate, by means of a similar system or finite element analysis, the highest signif-

icant spatial frequency component of the highest order mode to be identified.
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Figure 6.4: The RMS reconstruction error ||D(r)−Qn D(r)||2 plotted against
the spatial sampling interval∆r. (—) Optimal, (- -) Interpolation. The dashed-dot

line indicates the RMS value of the function D(r).



6.4 Identifying the System Matrix 191

2. Consider the feed-through function D(r). Assume that its highest significant fre-

quency component is three times that estimated in step (1). (This step is suggested

on the experience of studying and identifying a number of such systems).

3. Sample the structure as would be done in practice for a function with spatial band-

width derived in step (2). Taking into consideration the limited domain of the

structure, (allowing for truncation errors), this would normally be between 2 to 5

times the rate suggested by the Nyquist criterion.

6.4 Identifying the System Matrix

The first step in the identification procedure is to obtain an estimate for A, the system

matrix whose eigenvalues reveal the parallel dynamics of each mode. On first inspection,

this problem may appear trivial as the transfer function obtained from a single frequency

response would perform the task.

For spatially distributed systems we need to redefine our measures of model quality and

stochastic performance. In essence, the two main sources of error in the identification

arise from measurement noise and slight changes in system dynamics over the spatial

domain. Intuitively, we would like to distribute the resulting model error in a similar,

equally distributed fashion.

The problem can be cast as a MIMO system identification problem where each point is

regarded as a single output. In the case of a two-dimensional system, where a large number

of point-wise frequency response measurements are available, it may be necessary to limit

the data space by selecting only a subset of the available points. The virtual system as

seen by the system identification algorithm has a single input and Ñr outputs, where Ñr

may be equal to Nr or less than Nr if the data set is to be truncated. The frequency

response of such a system is similar to (6.6) and can be expressed as

Gy (jω, r)
r ⊂ {r1, . . . , rNr} ∈ R
ω∈{ω1, . . . , ωNω} .

(6.32)

For generality, we treat the identification algorithm as a general matrix function of the
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data, i.e. A = f (Gy (jω, r)) .

Methods that identify state space models by exploiting geometric properties of the input

and output sequences are commonly known as subspace methods. These methods have

received considerable attention in the literature, (see [117] for a survey of time domain

methods). The reader is referred to [76] and [82] for a full discussion of frequency do-

main techniques. Frequency domain subspace-based algorithms have proven particularly

useful for identifying high order multi-variable resonant systems [83]. In this chapter the

algorithm introduced in [82] will be employed.

6.5 Identifying the Mode Shapes and Feed-through Func-

tion

Samples of the spatial modal and feed-through functions are first identified from the fre-

quency response data and system matrix. The continuous functions are then approximated

by linear or spline reconstruction.

6.5.1 Identifying the Samples

Samples of the spatial functions will now be identified from the available frequency re-

sponse data. First, in order to simplify notation, we make a number of definitions.

The spatial response matrix is defined as

G =


Gy(jω1, r1) · · · Gy(jω1, rNr)

...
. . .

...

Gy(jωNω , r1) · · · Gy(jωNω , rNr)

 ∈ CNω×Nr . (6.33)

The dynamic response matrix is defined as

Ptf =


P−1

1 (jω1) · · · P−1
N (jω1)

...
. . .

...

P−1
1 (jωNω) · · · P−1

N (jωNω)

 ∈ CNω×N , (6.34)
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where P−1
i (jω) is the response of the ith mode found from the system matrix A

P−1
i (jω) =

1
[s+ (αi + jσi)] [s+ (αi − jσi)]

∣∣∣∣
s=jω

. (6.35)

The modal function matrix is defined as

Ψ =


Φ1(r1) · · · Φ1(rNr)

...
. . .

...

ΦN (r1) · · · ΦN (rNr)

 ∈ RN×Nr . (6.36)

The feed-through vector is defined as

D =
[
D(r1) · · · D(rNr)

]
∈ R1×Nr . (6.37)

From these definitions, we can form the following complex matrix equation,

G =
[
Ptf 1Nω×1

] Ψ̂

D̂

 , (6.38)

where 1Nω×1 denotes a matrix with dimension Nω × 1, whose entries are all 1. Equation

(6.38) has a unique least squares solution if Nω � N , this condition is automatically

satisfied if the restrictions for the subspace estimation in Section 6.4 are met, i.e. if Nω

� q+p, where p is the model order and q is the auxiliary order [82]. Since we are interested

in real valued functions we restrict the matrices Ψ̂ and D̂ accordingly.

6.5.2 Linear Reconstruction

Here the ordering and dimension of the co-ordinate vector r becomes important. For

notational simplicity, we assume r is single dimensional. Shannon’s formula for linear

reconstruction can be restated in context,

Φi(r) = ∆r

Nx∑
k=0

Φi(rk)
sin
(
π

∆r (r − rk)
)

π(r − rk)
(6.39)

= [Φi(r1) · · · Φi(rNr)]


sinc

(
π

∆r (r − r1)
)

...

sinc
(
π

∆r (r − rNr)
)
 .
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D(r) can be reconstructed in a similar fashion. For convenience we write an equation

describing all spatial functions,


Φi(r)
...

ΦN (r)

D(r)

 =

 Ψ̂

D̂




sinc
(
π

∆r (r − r1)
)

...

sinc
(
π

∆r (r − rNr)
)


=

 Ψ̂

D̂

Br(r), (6.40)

where Br(r) is the basis of reconstruction.

The spatial system can be written in state space form as

ẋ = Ax+Bu (6.41)

Y (r) = Br(r)′Ψ̂′Jx+ D̂Br(r)u,

where J =
[
e′1 e′3 · · · e′(2N−1)

]′
∈ RN×2N and ei is the i shifted unit impulse,

e.g. e3 =
[
0 0 1 0 · · · 0

]
. Note the equivalence of system (6.41) to (6.7), where

Br(r)′Ψ̂′J and D̂Br(r) represent the identified function matrix C(r) and feed-through

function D(r).

6.5.3 Spline Reconstruction

The spline reconstructed system is similar to (6.41) with the exception that the function

samples

 Ψ̂

D̂

 and reconstruction basis Br are replaced by the spline coefficients and

chosen spline basis.

Finding the Spline Coefficients c(k)

Many standard procedures exist for finding the spline coefficients c(k) as defined in Equa-

tion (6.12). The reader is referred to reference [112] for an overview of such techniques.
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Summary

After computing the spline coefficients for each mode, the spatial system can be expressed

in state space form:

ẋ = Ax+Bu (6.42)

Y (r) = Bn(r)′C′
sJx+DsB

n(r)u,

whereDs =
[
cd(1) cd(2) cd(Nr)

]
are the spline coefficients ofD(r),Cs is the matrix

containing the modal spline coefficients and Bn(r) is the spline reconstruction basis,

Cs =


c1(1) · · · c1(Nr)
...

. . .
...

cN (1) · · · cN (Nr)

 (6.43)

Bn(r) =


βn( r∆r )

βn( r∆r − 1)
...

βn( r∆r − (Nr − 1))

 . (6.44)

6.6 Experimental Results

The presented technique will now be applied to identify two spatially distributed systems,

a simply-supported beam and an asymmetric cantilever plate. Both structures are excited

using bonded piezoelectric actuators. Although the simply-supported beam is easily mod-

eled using analytic methods (albeit with experimental tuning), applying such techniques

to the plate is significantly more difficult. The problem is complicated by the irregular

geometry of the plate boundary.

The experimental beam and plate apparatus are shown in Figures 3.30 and 6.11 respec-

tively.
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Frequency Range 10-200 (Hz)

Equidistant F Samples 3031

Spatial Sampling interval 2.5 cm

Identification Samples 13

Validation Samples 13

Excitation Colored Noise

Table 6.1: Identification Parameters.

6.6.1 Beam Identification

Experimental Setup

The physical parameters of the beam and properties of the piezoelectric transducer can

be found in Tables 3.1 and 3.2.

Colored noise is applied to the actuator and the spatial response is measured sequentially

using a Polytec scanning laser vibrometer. Details of the data set are given in Table 6.1.

Spatial Functions

The extracted mode shape and feed-through function samples together with their spline

and linear reconstructions are shown in Figures 6.5, 6.6 and 6.7. It can be observed that

the identified feed-though function is similar to that derived analytically, shown in Figure

6.3.

The Shannon reconstructed mode shapes are significantly distorted by the combination

of truncation error and sample noise. It is interesting to note the effect of piezoelectric

stiffness on the mode shapes of the beam shown in Figure 6.6. The length of the beam

bonded to the piezoelectric patch is obviously more restricted in its deflection. Such

structures with localized changes in stiffness are very difficult to model in closed form

using present analytic techniques.
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Figure 6.5: The extracted mode samples (×) and linear reconstruction.
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Figure 6.6: The extracted mode samples (×) and spline reconstruction.
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Figure 6.7: The extracted feed-through function samples (×), the linear recon-
struction (–), and spline reconstruction (- -).

Spatial Response

To evaluate model quality, the measured spatial beam response plotted in Figure 6.8 is

compared to the identified model response plotted in Figure 6.9. Each point-wise fre-

quency response is measured from the applied actuator voltage (in volts) to the resulting

displacement (in meters). A separate interlaced set of 13 points was used to perform the

validation. The magnitude response of the error system, Gy (jω, r) − Ĝy (jω, r) , where

Ĝy(jω, r) denotes the model response, is plotted in Figure 6.10. In the frequency domain,

the identified model is observed to accurately represent the physical system.
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Figure 6.8: The experimental beam spatial frequency response from an applied

actuator voltage to the measured displacement Gy (jω, r).

Figure 6.9: The spline reconstructed model response, from an applied actuator

voltage to the measured displacement Ĝy (jω, r).



200 6. Spatial System Identification

Figure 6.10: The error system response, Gy (jω, r)− Ĝy (jω, r).

Frequency Range 10-100 (Hz)

Equidistance F Samples 577

Number of Spatial Samples 468

Spatial Sampling interval 2.63 cm

Excitation Colored Chirp

Table 6.2: Plate Identification Parameters.

6.6.2 Plate Identification

Experimental Setup

The experimental plate is constructed from aluminum of 4 mm thickness. Figure 6.11

shows the experimental plate, clamped vertically by its bottom edge to an optical table.

Geometry and dimensions are shown in Figure 6.12. System identification parameters are

given in Table 6.2.
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Figure 6.11: Experimental plate apparatus.
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Figure 6.12: Plate geometry (mm).
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Figure 6.13: Distribution of the spatial samples. An ’×’ represents the location
of a sample used to identify the system matrix A. The dashed line represents the

side elevation of a spatial frequency response cross section used to analyze model

quality.

Spatial Functions

An estimate for the system matrixA is first obtained using a scattered subset of the spatial

frequency samples. The location of subset points is shown in Figure 6.13. Equation (6.38)

is solved to identify the mode shapes and feed-through function. The resulting mode

shapes and feed-through function are plotted in Figures 6.14 and 6.15.

Spatial Response

Due to the difficulties in visualizing a four-dimensional quantity, we evaluate model qual-

ity by taking a planar section of the spatial frequency response. An elevation of the

section is shown in Figure 6.13. The measured, identified model, and error system

Gy (jω, r)−Ĝy (jω, r) frequency responses are shown in Figures 6.16, 6.17 and 6.18 respec-
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Figure 6.15: The identified feed-through function D(r).
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Figure 6.16: A cross section of the cantilever plate measured spatial frequency

response. The response is measured from the applied actuator voltage to the

resulting displacement.

tively. Each point-wise frequency response is measured from the applied actuator voltage

to the resulting displacement (in meters). As shown by the magnitude of the error system

response, in the frequency domain, a good correlation between the experimental data and

model response can be observed.

6.7 Conclusions

A technique has been presented for identifying a class of distributed parameter systems

from a set of spatially distributed frequency responses. The systems are modeled as a

finite sum of second order transfer functions with spatially variant numerators and a feed-

through term.

In an attempt to evenly distribute model error, the identification is cast as a single-input

multi-output identification problem. An estimate for the system dynamics is sought using

a frequency domain subspace algorithm. Samples of the mode shapes and feed-through
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Figure 6.17: A cross section of the spline reconstructed model response.

Figure 6.18: A cross section of the plate error system frequency response,

Gy (jω, r)− Ĝy (jω, r).
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function are then identified and used to reconstruct the continuous functions. If the spatial

Fourier transform is known, the error due to under sampling can be quantified.

Experimental identification of a simply-supported beam and cantilever plate has shown

an adequate correlation in the frequency domain between the measured system and iden-

tified model. In both cases the majority of discrepancy is due to small errors in the

resonance frequencies. It is anticipated that future contributions in this area will involve

the development of an efficient optimization algorithm to minimize such errors.

Other outstanding problems to date include: the automatic identification of non-distributed

dynamics H(s), experimental identification incorporating piezoelectric sensor voltages,

time domain identification techniques, and stochastic analysis.



7

Conclusions

This thesis has presented new techniques for the control and system identification of elec-

tromagnetic and piezoelectric actuated smart structures. Conclusions specific to each

topic, and directions for future research can be found at the close to each chapter. Follow-

ing is a summary of the main arguments, contributions, and results presented throughout

this thesis.

7.1 Summary and Conclusions

An initial review of piezoelectric shunt damping techniques presented in Chapter 2 con-

cluded that resonant shunt circuits provide good performance but are impractical to im-

plement using physical components or virtual circuits. The synthetic impedance was

introduced as a practical method for the implementation of arbitrary shunt impedances.

The synthetic impedance requires a voltage controlled current source and analog or digital

signal filter. In Chapter 3, the compliance feedback current source was introduced to

alleviate problems associated with present current and charge driver designs. A technique

was also presented for the design of digital and analog impedance filters. This technology

significantly simplifies the implementation of piezoelectric shunt vibration control systems.

In Chapter 4, the arbitrary nature of synthetic implementation was exploited to facilitate

the design and implementation of active shunt controllers. By casting the problem of

impedance design as a standard regulator problem, traditional synthesis techniques such

as LQR, LQG, H2, and H∞ can be applied. Active shunt controllers can be designed
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to minimize an arbitrary performance objective, are easily extended to multi-transducer

structures, and do not suffer the same performance limitations as passive circuits. Ex-

perimental application to a cantilever beam has shown significantly better performance

than passive techniques. One of the most outstanding features of active shunt control is

the independence to variation in structural resonance frequencies. Where small changes in

structural resonance frequencies can severely effect the performance of active feedback and

passive vibration control systems, the nature of active shunt control offers high immunity

to such variation.

Electromagnetic transducers have long been employed as actuators and sensors in the field

of mechanical vibration control. In contrast to piezoelectric transducers, they are suitable

for in-plane force control, have large displacement strokes, and are physically robust for

industrial applications. As presented in Chapter 5, an impedance can be connected to the

terminals of an electromagnetic transducer with a view to minimizing structural vibra-

tion. Alike piezoelectric shunt control, passive and active impedances can be designed to

reduce structural vibration. A framework is presented for the design and analysis of active

electromagnetic shunt controllers. An experimental electromagnetic system is successfully

controlled using an LQR and H2 active shunt impedance. Applications of electromagnetic

shunt control include, vibration isolation, acoustic noise control, and inertial force control.

With the advent of active impedance control, the possibility now exists for mitigation

of an arbitrary performance objective. In analogy to active control systems, a single

structural point is chosen to represent structural vibration. Inevitably, the chosen point

will express a weighting on the modes most dominant at that location. Spatial control is

a technique for modifying a performance objective to account for the global vibration in a

flexible structure. In Chapter 6, spatial system identification is presented as a method for

procuring spatial models of flexible structures. By performing a subspace identification

and least-squares fit, a spatially continuous model can be obtained. The model can be

employed in the synthesis of spatially weighted controllers.
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