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Abstract
Atomic force microscope (AFM) cantilevers with integrated actuation and sensing provide several
distinct advantages over conventional cantilever instrumentation. These include clean frequency
responses, the possibility of down-scaling and parallelization to cantilever arrays as well as the
absence of optical interference. While cantilever microfabrication technology has continuously
advanced over the years, the overall design has remained largely unchanged; a passive rectangular
shaped cantilever design has been adopted as the industry wide standard. In this article, we
demonstrate multimode AFM imaging on higher eigenmodes as well as bimodal AFM imaging with
cantilevers using fully integrated piezoelectric actuation and sensing. The cantilever design
maximizes the higher eigenmode deflection sensitivity by optimizing the transducer layout
according to the strain mode shape. Without the need for feedthrough cancellation, the read-out
method achieves close to zero actuator/sensor feedthrough and the sensitivity is sufficient to resolve
the cantilever Brownian motion.

Keywords: atomic force microscopy, piezoelectric actuation and sensing,
microelectromechanical systems (MEMS), multifrequency AFM, feedthrough, noise analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

Micro and nano precision mechatronic systems have sig-
nificantly enabled the steady growth of nanotechnology over
the past three decades. They are situated at the heart of a
variety of instruments for manipulation and interrogation at
the nanoscale, such as atomic force microscopes (AFM) [1],
scanning tunneling microscopes [2], scanning lithography
systems [3] and probe-based data storage systems [4].

A key component of these instruments is a microcantilever
which forms the physical link between the sample under

investigation and the measurable quantity. It has served as a
key nano-interrogation tool contributing to major innovations
in a number of industrial applications and research fields
including nanometrology [5], semiconductor manufacturing
[6], material science [7] and bio-nanotechnology [8].

While cantilever microfabrication technology has con-
tinuously advanced over the years, the overall design has
remained largely unchanged; a passive rectangular cantilever
has been adopted as the industry wide standard. Conse-
quently, conventional cantilever instrumentation requires
external piezo-acoustic excitation [9] as well as an external
optical deflection sensor [10]. Both of these components are
not optimal for trends in multifrequency AFM technology
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which can extend the imaging information beyond the topo-
graphy to a range of nano-mechanical properties including
sample stiffness, elasticity and adhesiveness [11–13]. In
contrast, active cantilevers with integrated actuation and
sensing on the chip level provide several distinct advantages
over conventional cantilever instrumentation [14]. These
include ‘clean’ frequency responses that do not include
structural modes of the mounting system [15], the possibility
of down-scaling [16], single-chip AFM implementations
[17, 18], parallelization to cantilever arrays [19] as well as the
absence of optical interference [20].

A number of integrated actuation methods have been
developed over the years to replace the piezo-acoustic excita-
tion [21–23], however only electro-thermal [24] or piezo-
electric actuation [25] can be directly integrated on the
cantilever chip. Compared to the optical beam deflection sen-
sor, strain-based deflection measurements such as piezoelectric
[26] and piezoresistive sensing [27] yield a much more com-
pact form factor, and increased sensitivity for smaller cantilever
dimensions [28–30] and higher order eigenmodes [31].

Utilizing piezoelectric layers for both actuation and
sensing is a promising avenue when trying to minimize the
number of microelectromechanical systems (MEMS) fabri-
cation steps. However, complete electrical isolation between
the sense and drive electrodes is difficult to incorporate
resulting in parasitic coupling and a potentially large feed-
through path from actuation to sensing [32, 33]. Since the
feedthrough adds to the sensor signal, it can entirely conceal
the signal originating from the motion of the structure. As a
result, feedthrough cancellation techniques have to be
employed in order to cancel the parasitic feedthrough [15, 18,
34–36]. While these techniques can recover a buried reso-
nance peak, tuning can be cumbersome and the additive
nature of the cancellation modifies the cantilever system
dynamics and degrades noise performance.

In this work, a cantilever design with integrated piezo-
electric actuation and sensing is presented which enables
multimode AFM imaging without the need for feedthrough
cancellation. Due to the ability to design the location and
layout of the piezoelectric transducers, the deflection sensi-
tivity of the first two eigenmodes is optimized while also
providing separated actuators and sensors. A detailed analysis
of the electrical circuit noise is performed both in simulation
and in experiment. The low noise of the proposed method
allows the detection of Brownian motion at the first eigen-
mode of the cantilever. The entire system is demonstrated to
perform single-mode AFM imaging on a SiC sample as well
as bimodal AFM imaging on a polymer blend.

2. Cantilever design and instrumentation

2.1. Cantilever design

The cantilever geometry chosen for this work is a stepped
rectangular design which has the benefit of closely spaced

higher eigenmodes [37]. The cantilever consists of a wider
section with dimensions of m m´500 m 400 m and a smaller
section with dimensions of m m´100 m 400 m. A photo of the
fabricated cantilever is shown in figure 1. The wire-bonding
pads labeled A and S are used for actuation and sensing. The
ground trace is run between the signal traces and piezoelectric
areas in order to minimize the actuator-sensor feedthrough [38].

A piezoelectric transducer generates mechanical stress/
strain in response to an applied electric field and vice versa.
This behavior is described by the IEEE standard on piezo-
electricity [39] and for the pure bending case can be written
with the two scalar constitutive equations (axis definition as
per figure 1)

 s= + ( )
Y

d E
1

, 11 1 31 3

s x= + ( )D d E 23 31 1 33 3

with Young’s modulus Y (Nm−2), piezoelectric d (mV−1)
and dielectric ξ (F m−1) material constants, applied stress
σ (Nm−2), applied electrical field E (Vm−1) and the depen-
dent variables resulting strain ò (mm−1) and resulting elec-
trical displacement D (Cm−2). When used as a sensor, a
charge is generated on the electrode surfaces of the piezo-
electric material [40]

ò= ( )Q D dA. 3
A

3

For an Euler–Bernoulli beam approximation, the charge can
be calculated from the integral of the second derivative of the
mode shape
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Figure 1. Photo of fabricated bimodal piezoelectric MEMS
cantilever with integrated piezoelectric actuation and sensing.
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where σs(x) is the surface stress at the position x along the
cantilever, t is the total cantilever thickness. The charge
output can be stated as a function of the tip deflection using
the static bending case approximation [41] (compare
appendix A)

= ( ) ( )Q
L

d twYz L
3

4
531

assuming a piezoelectric sensor over the full cantilever width
w and length L. For non-Euler–Bernoulli beams like the
cantilever in this work, Mindlin plate theory is used to obtain
a finite element model to perform modal analysis. The charge
response of each finite element is calculated as [42]

ò ò
q q

=
¶

¶
-

¶
¶
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where θx,y(x, y) are the rotations of the normal of the canti-
levers neutral plane around the x-axis and y-axis, respectively.
As such, higher eigenmode deflection sensitivities can be
maximized by placing individual piezoelectric regions on
areas where the charge response of the finite elements of a
flexural mode do not change the sign [31]. This approach
avoids the cancellation of charges with opposite sign, which
would lead to reduced actuator gain and sensor sensitivity. If
this design procedure is applied for the first and second
flexural eigenmodes, a piezoelectric layer configuration as
shown in figure 1 is obtained. This configuration is optimal
for transduction of the first two eigenmodes of the cantilever
while providing separated actuators and sensors, enabling
single mode and bimodal AFM imaging.

2.2. Cantilever instrumentation

The piezoelectric actuator can be driven directly by an input
voltage source. The piezoelectric sensor is instrumented with a
first stage charge-mode amplifier circuit shown in figure 2
which amplifies the charge generated by the strain-dependent
piezoelectric voltage source Vp on the piezoelectric capacitance
Cp [43]. The benefit of this circuit is that the high-frequency
sensor gain only depends on the feedback capacitance Cf and is
independent of the input capacitance at the op-amp. The circuit
forms a high-pass filter from piezoelectric charge to first stage

output voltage

= =
-

+
( ) ( )

( )
( )H s

V s

Q s

R s

R C s 1
, 7o f

f f

where the high-frequency charge-to-voltage gain is 1/Cf and
the corner frequency is given by p= -( )f R C2c f f

1.

2.3. Circuit noise analysis

Throughout the following analysis and for the remainder of
the paper, we refer to =( ) ( )N f S fx y x y, , as the noise spec-
tral density of the signal x due to a process y as a function of
frequency f. The electrical noise in the charge amplifier read-
out circuit is dictated by four major noise sources shown in
figure 2: Johnson thermal noise in the piezo resistor Rp and
amplifier feedback resistor Rf, op-amp voltage noise en and
op-amp current noise in−. The noise sources can all be
referred to an equivalent op-amp input noise voltage (RTI) or
referred to output noise (RTO) by multiplying the RTI noise
with the noise gain Gn of the circuit
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where = +C C Cs p i is the total input capacitance seen by the
op-amp inverting input. The noise gain magnitude is
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The individual output noise spectral densities can be
written as
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where the feedback impedance is given by
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+
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The total output voltage noise spectral density is then
obtained from

= + + +( ) ( )N f N N N N . 14v v e v i v R v R,
2

,
2

,
2

,
2

o o n o n o p o f

Figure 2. Electrical circuit configuration of the piezoelectric charge
amplifier with the four electrical noise sources: Johnson noise in
resistors Rp and Rf, op-amp voltage noise en and op-amp current
noise -in .

3

Nanotechnology 30 (2019) 085503 M G Ruppert et al



These equations have been evaluated for a measured
piezoelectric impedance of the cantilever with Rp=35MΩ

and Cp=38 pF. The feedback impedance values chosen
were Rf=10MΩ and Cf=10 pF resulting in a charge-to-
voltage gain of 220 dB and cut-off frequency of 1.59 kHz.
The results were compared with LTspice simulations using
the JFET op-amp OPA827 with =e 3.8 nV Hzn , =-in

2.2 fA Hz and Ci=4.5 pF.
The results are shown in figure 3. It can be seen that the

theoretical equations predict the total noise spectral density as
well as the Johnson noise from the resistors accurately. At
low frequencies, the noise floor is dictated by the Johnson
noise in the feedback resistor Rf. At high frequencies, the
noise floor is dictated by the op-amp voltage noise multiplied
by the high-frequency noise gain +1 C

C
s

f
, which results in

19.95 nV Hz . At the resonance frequency of the first mode
( f=36 kHz), the total noise is 28.71 nV Hz . Assuming
post-amplification stages with a combined gain of 100, the
total expected electrical noise floor is approximately

m2.9 V Hz .

2.4. Electrical circuit optimization

The deflection noise density (at the resonance frequency) is a
function of the feedback capacitance Cf and feedback resist-
ance Rf. The choice of these components is non-trivial since
they determine the high-frequency noise gain, the signal gain
as well as the high-pass filter cut-off frequency (7) which
needs to be maintained well below the first mode resonance
frequency of the cantilever. Therefore, it is advantageous to
optimize Cf and Rf to minimize the deflection noise density
due to electrical noise which is given by

=
Y

( ) ( ) ( )N f
N f

, 15e
v

PZE

o

where ΨPZE is the piezoelectric deflection sensitivity (see
appendix A). For the simulation, the experimentally deter-
mined piezoelectric deflection sensitivity (table 1) has
been used.

A plot of ∣ ( )∣N fe 0 as a function of the feedback impe-
dance parameters is shown in figure 4. For a given fixed
piezoelectric capacitance and input capacitance of the
op-amp, minimizing Ne is achieved by minimizing the feed-
back capacitance and maximizing the feedback resistance
while maintaining the frequency constraint <fc f10 0 of the
high-pass filter characteristic (7). Due to challenges with
implementing very high resistance and capacitance values
that approach circuit parasitics, Rf=10MΩ and Cf=10 pF
was chosen but these could be further optimized in future
designs. In the pass band of the charge sensor f?fc, Ne (15)
is dominated by the contribution arising from the op-amp
voltage noise term (9)

µ
+

= +∣ ( )∣
( )

( ) ( )N f f
e

e C C
1

. 16e c

n
C

C

C

n s f1

s

f

f

Minimizing Ne is achieved by minimizing the feedback
capacitance and all op-amp input capacitances including the
piezoelectric capacitance as the generated charge is not a
function of the piezoelectric capacitance (5).

3. Experimental results

3.1. Device fabrication

3.1.1. Cantilever fabrication. The piezoelectric cantilevers
were fabricated using the rapid five mask MEMS prototyping
process PiezoMUMPS® (MEMSCAP Inc.) [44]. The process
features a m400 m silicon substrate, a device layer of single-
crystal-silicon with a thickness of m10 m, a m0.5 m layer of
piezoelectric aluminum-nitrate (AlN) and a 20 nm chrome/
m1 m aluminum metal stack layer for electrical connections.

Figure 3. Theoretical output voltage noise spectral densities of the
charge-mode amplifier noise sources and LTspice simulations in
black dashed lines: Johnson Noise in resistors Rp (11) and Rf (12),
op-amp voltage noise (9) and current noise (10) resulting in the total
output voltage noise spectral density (14).

Figure 4. Total deflection noise density of the charge-mode read-out
circuit at the fundamental resonance frequency as a function of
feedback capacitance and resistance.

Table 1. Summary of the modal piezoelectric gains and sensitivities.

Actuation gain Deflection sensitivity
-( )nm mV 1 -( )mV nm 1

Mode 1 6.038 9.5021
Mode 2 2.719 10.4328
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A cross-section schematic of the process is shown in figure 5.
The top surface of the device layer is doped by depositing a
phosphosilicate glass layer and annealing in argon and is
subsequently used as the device common ground return path.
Electrical insulation between the signal tracks and ground is
provided by a m1 m pad oxide layer.

3.1.2. Tip fabrication. As the PiezoMUMPS® process does
not allow for the inclusion of sharp tips at the cantilever end,
two types of post-fabricated tips have been employed as
shown in figure 6: welding of a pre-fabricated silicon tip to
the cantilever and focused ion beam (FIB) induced deposition
of a new Tungsten tip. Both solutions were implemented
using a FEI Helios Nanolab G3 CX DualBeam FIB/SEM.

In the first approach, commercially available silicon
AFM cantilevers were used as a source of sharp, well-defined
tips. In the first step, the cantilever tip is cut out in a U-shaped
pattern using FIB milling while being attached to a
micromanipulator needle. After transferring the removed tip
and aligning it on top of the PiezoMUMPS® cantilever, FIB
Platinum welding is used to permanently fix the tip. SEM
images of this workflow are shown in figure 6.

In the second approach, direct FIB deposition of
Tungsten is used to form single or multi-segment tips which
are subsequently sharpened using tilted FIB milling. The
diameter of the single segment tips is approximately d=
250 nm and the height m=h 12 m. The diameter of
the three segment tips is approximately m m=d 2 m, 1 m,
200 nm and the height m=h 12 m. SEM images of these tips
are shown in figure 6.

3.2. Sensor implementation and experimental setup

The fabricated charge-mode amplifier read-out circuit with a
3D-printed cantilever holder for a Horiba XploRA Nano
Raman-AFM system is shown in figure 7. The read-out circuit
contains on-board low-noise power supplies (±5 V linear
regulators TPS7A4901 and TPS7A3001), a first stage charge
amplifier (Texas Instruments OPA827 low-noise JFET
op-amp) and additional low-noise post amplification stages
(Texas Instruments OPA2211 low-noise precision op-amp)
for additional gain. The fabricated MEMS cantilevers are
glued directly onto the PCB in order to achieve the best
performance. Guarding the highly sensitive charge input trace

through all levels of the PCB and into the first stage op-amp
package is necessary to achieve a low parasitic capacitance to
the input which in turn results in minimal feedthrough.

3.3. Modal analysis and self-sensing frequency responses

The frequency response of the piezoelectric cantilever is
measured with a laser Doppler vibrometer (Polytec MSA-
100-3D) and using the integrated piezoelectric sensor. The
displacement response is obtained by broad-band periodic
chirp excitation and integration of the velocity measurement
in the frequency domain. The charge response is measured by
performing a frequency sweep with a lock-in amplifier
(Zurich Instruments HF2LI). Both results are directly com-
pared in figure 8 by aligning the charge response to the dis-
placement response on the first mode. The dynamic range of
the charge frequency response is similar to the direct dis-
placement measurement which implies a very low actuator/
sensor feedthrough. This is further evident in the close-up
view of the first and second mode which show a full 180◦

Figure 5. Schematic of the PiezoMUMPS® five mask microfabri-
cation process (not to scale).

Figure 6. SEM images of the workflow for post-fabrication of FIB
welded tips and SEM images of fabricated single/multisegment FIB
tungsten tips.

Figure 7. Photos of the implemented charge-mode amplifier read-out
circuit for a Horiba XploRA Nano Raman-AFM system.
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phase transition and a very close match to the true displace-
ment response. Another indicator for a low actuator/sensor
feedthrough is the location of the complex zero pair leading
up to the first eigenmode. This effect is explained by a small
amount of parasitic capacitance between actuator and sensor
causing a residual amount of feedthrough charge with oppo-
site sign to the motional charge [38].

The modal sensitivities are found by exciting each mode
with a pure sine tone and measuring the displacement
response optically and with the piezoelectric charge sensor.
Table 1 summarizes the displacement (actuation) and charge
(sensing) sensitivities.

3.4. Noise performance

3.4.1. Thermal noise measurement. The noise performance
of the piezoelectric sensor implementation is assessed by
measuring the Brownian motion at room temperature and
recording the corresponding thermal noise spectrum around
the fundamental eigenmode of the cantilever. The total
measured deflection noise density is

= +( ) ( ) ( ) ( )N f N f N f , 17d z e
2 2

where Ne is the deflection noise density due to electrical noise
(15) and Nz is the thermomechanical deflection noise density
of the fundamental mode of the cantilever as observed by the

piezoelectric sensor (see appendix B)

w
w

=
- +w

w
w

w( )
( ) ( )N

k T

k Q
0.8175

4 1

1
, 18z

B

Q
0

22

0
2

2

0
2 2

where kB, T, k, ω0, Q are the Boltzman constant, absolute
temperature, dynamic stiffness, resonance frequency and
quality factor. The cantilever parameters are identified from
a Lorentzian function fit to the velocity power spectrum
obtained from the laser Doppler vibrometer measurement [45]
and are determined as = -k 33.67 N m 1, Q=369.8, ω0=
2π36.42 kHz. Similarly, the cantilever spring constant can be
identified from the piezoelectric thermal noise spectrum
which yields = -k 30.04 N m 1 using

=
Y ( )k

k T

P
, 19B PZE

2

where P is the positional noise power in units of (V2) isolated
in the fundamental resonance mode (area underneath the
thermal noise peak) and ΨPZE is the piezoelectric deflection
sensitivity stated in table 1. The measurement is within
acceptable experimental tolerance levels but is very sensitive
to the displacement calibration factor.

The deflection noise densities measured with the
piezoelectric sensor and with the laser Doppler vibrometer
(Polytec MSA-100-3D, noise floor 30 fm Hz ) are shown in
figure 9. Also shown is a Lorentzian function fit to the charge
response which estimates the white noise floor to be
712 fm Hz using the first mode charge sensitivity state in
table 1, or m6.77 V Hz in the voltage domain. This value is
comparable to practical OBD sensor systems in commercial
AFMs which achieve –100 1000 fm Hz [46]. At resonance,
the peak value is 1141 fm Hz . Note that the difference
between the spectra is due only to the differences in the noise
floor between the two sensors, according to (17). That is, the
thermomechanical noise is identical. From the analytical

Figure 8. Frequency response of the piezoelectric cantilever
measured with a laser Doppler vibrometer (MSA-100-3D) and using
the integrated piezoelectric charge sensor.

Figure 9. Thermal noise spectrum of the fundamental mode of the
piezoelectric cantilever measured with the integrated charge sensor
(Exp. Charge) and with a laser Doppler vibrometer (Exp. MSA). A
Lorentzian fit to the charge response (Fit Charge) and the theoretical
position power spectral density of the harmonic oscillator (see
appendix B) (Theory Position) is also shown.
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equations presented in section 2.3, the total noise floor of the
sensor around the first mode resonance should be

m2.9 V Hz assuming an OPA827 operational amplifier
with post-amplification stages with a gain of 100. The
increased noise floor can be explained by additional parasitic
circuit elements such as an increased input capacitance and
tolerances in the circuit components. In the pass-band of the
charge sensor, the high-frequency noise floor is measured at

m4.85 V Hz in the voltage domain.
While the noise floor of the piezoelectric charge sensor is

comparable to practical OBD sensor systems in commercial
AFMs, it does not yet compare to the lowest optical read-out
methods reported in the literature. However, there are
significant opportunities for improvement by using a piezo-
electric material with a larger strain constant d31. This would
yield a significantly higher piezoelectric deflection sensitivity
ΨPZE which scales the electrical noise floor (15).

3.4.2. Demodulated amplitude noise. The amplitude voltage
noise density is obtained by actively driving the first and
second eigenmode of the cantilever and demodulating the
charge sensor output with a lock-in amplifier (HF2LI Zurich
Instruments). The cantilever is actively driven at each mode,
resulting in a deflection of 60 nm on the first mode and 27 nm
on the second mode. A 4th-order low-pass filter with cut-off
frequency of fc=100 Hz is used in the lock-in amplifier.
Using the actively driven sensor sensitivities from table 1,
amplitude deflection noise density estimates on each mode are
shown in figure 10 which are obtained from the time-domain
demodulated amplitude signals sampled at 14.4 kHz. From
the plot, the amplitude deflection noise density on the first
mode is 1113 fm Hz and on the second mode is
505.2 fm Hz . The first mode value matches the thermal
noise peak value at resonance from figure 9.

3.5. AFM imaging

The multimode piezoelectric cantilever with read-out circuit
was interfaced with a Horiba XploRA Nano Raman-AFM
system as shown in figure 7. Two samples were investigated:
a SiC-STEP calibration sample (Ted Pella) with single step
heights of 1.5 nm was imaged with the first and second
eigenmode and a blend of polystyrene (PS) and polyolefin

elastomer (LDPE) (Bruker, PS-LDPE-12M) was imaged in
bimodal AFM using the first and second eigenmode. Due to
the varying elastic moduli between the PS and LPDE regions,
this sample is a widely used standard to image material
contrast.

3.5.1. Imaging on higher eigenmodes on SiC-STEP sample.
Single mode AFM imaging was performed using the first and
second eigenmode of the piezoelectric cantilever respectively
on a SiC-STEP calibration sample (Ted Pella). The results are
shown in figure 11 where except for plane leveling and line
fitting no other post-processing has been applied to the AFM
data. Imaging on the first eigenmode was performed at a free-
air amplitude of A1,0≈50 nm at a setpoint of 85% and on the
second eigenmode at a free-air amplitude of A2,0≈20 nm at a
setpoint of 90%. For both cases, good topography results are
obtained of the SiC steps whereas the second mode image
shows lower noise as is evident from the cross-section
analysis in figure 11. This can be attributed to the higher
deflection sensitivity and lower circuit noise at the second
mode frequency. The lower noise on the second eigenmode
allows for a small harmonic electric noise source to be visible
in the topography image.

3.5.2. Bimodal imaging on PS-LDPE sample. Bimodal AFM
imaging was performed using the first and second eigenmode
of the piezoelectric cantilever on a PS/LPDE sample (Bruker)
and are shown in figure 12. The first eigenmode free-air
amplitude was set to A1,0≈50 nm and the second eigenmode
free-air amplitude was set to A2,0≈7.5 nm. The dynamic
stiffnesses of the first and second eigenmode are determined
from a thermal noise calibration and are found to be

= -k 33.67 N m1
1 and = -k 288 N m2

1. From the histogram
plots of the phase images of the first and second eigenmode,
the improved phase contrast of the second eigenmode channel
is clearly visible. While the first eigenmode contrast is about
ΔΦ1=40.8°, the second eigenmode contrast is about
ΔΦ2=82°. The phase images have been shifted to zero
degrees to enable a better comparison.

4. Conclusion

This paper has demonstrated cantilevers optimized for multi-
mode operation with fully integrated piezoelectric actuation and
sensing on the chip level. Previously reported limitations due to
actuator/sensor feedthrough are mitigated by the inclusion of
guard traces on both the circuit and MEMS device. Single mode
AFM imaging on the first and second eigenmode as well as
bimodal imaging using the first two eigenmodes is shown to
provide adequate imaging quality. While the deflection noise
sensitivity of the read-out method is not yet comparable to the
lowest noise optical read-out methods in literature, optimization
of the piezoelectric sensitivity constant leaves significant
opportunities for improvement.

Figure 10. Demodulated amplitude noise on the first and second
eigenmode at a 100 Hz demodulation bandwidth.
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Appendix A. Charge sensitivity

The following derivation assumes a cantilevered Euler–Bernoulli
such that the bending stress in x-direction is given by [41]

s = = - ( ) ( ) ( ) ( )x Y x zYz x , A1

where z is the perpendicular distance to the neutral axis and Y is
the Young’s modulus of the material. Here, stress is defined to be
positive under elongation (tensile stress) and negative under
compression (compressive stress). ( )z x is the second derivative
of the displacement mode shape which is related to the curvature
of the beam and can be derived from the static solutions to the
Euler–Bernoulli equations under a point load at the tip [41]

= -( ) ( ) ( )z x
Fx

YI
L x

6
3 , A2

2

¢ = -( ) ( ) ( )z x
Fx

YI
L x

2
2 , A3

 = -( ) ( ) ( )z x
F

YI
L x . A4

The displacement at the free end x=L, for a given point force F
is given by

= =( ) ( )z L
FL

YI

F

k3
, A5

3

where k is the static spring constant of the cantilever. Therefore
the resulting slope and second derivative as a function of the free-
end deflection can be found by substituting the force

¢ = -( ) ( ) ( ) ( )z x
x

L
L x z L

3

2
2 , A6

3

 = -( ) ( ) ( ) ( )z x
L

L x z L
3

. A7
3

The charge collected on the electrodes of the piezoelectric layer
located at the surface z=t/2 can be determined by integrating
the electrical displacement over the electrode area [40]

ò ò s= = ( ) ( )Q D dA d x dA. A8
A A

s3 31

Using s = - ( ) ( )x t Yz x2s and assuming a piezoelectric sensor
over the full cantilever width w, the charge can be calculated as

ò ò=  = ( ) ( ) ( )Q
d tY

z x dA
d twY

z x dx
2 2

. A9
A x

31 31

Assuming that the piezoelectric transducer is also over the entire
length of cantilever L, the charge can be calculated as

ò=  = ¢ - ¢( ) [ ( ) ( )] ( )Q
d twY

z x dx
d twY

z L z
2 2

0 . A10
L

31

0

31

Since the cantilever is clamped at the base, the slope is zero
¢ =( )z 0 0 and therefore:

= ¢( ) ( )Q
d twY

z L
2

. A1131

Using ¢ =( ) ( )z L z L
L

3

2
, the charge as a function of tip dis-

placement is found to be

= ( ) ( )Q
L

d twYz L
3

4
. A1231

Using the transfer function of the charge amplifier read-out cir-
cuit, the piezoelectric displacement sensitivity in units of (Vm−1)

Figure 11. Single mode AFM imaging using the first and second
eigenmode of the piezoelectric cantilever on a 1.5 nm SiC sample.

Figure 12. Bimodal AFM imaging using the first and second
eigenmode of the piezoelectric cantilever on a PS/LPDE sample.
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is given by

Y = »( ) ( )H s
d twY

L

d twY

LC

3

4

3

4
. A13

f
PZE

31 31

Appendix B. Thermomechanical piezoelectric noise

B.1. Thermal vibrations

A single mode of the cantilever can be approximated by a
simple harmonic oscillator for which the potential energy can
be written as [47]

w =⟨ ⟩ ⟨ ⟩ ( )m z k z
1

2

1

2
, B1i i0

2 2 2

where m, ω0, k are the mass, resonance frequency, stiffness
and ⟨ ⟩zi

2 are the mean squared deflection of the oscillator
[48]. The equipartition theorem states that if the system is in
thermal equilibrium, the total energy of each vibrational mode
(potential plus kinetic energy) has a mean value equal to

k T1 2 B , where kB is the Boltzman constant and T the absolute
temperature [7]. Therefore, the equipartition theorem
demands

=⟨ ⟩ ( )k z k T
1

2

1

2
B2i B

2

and consequently the thermal noise vibrations can be stated as
[48]

=⟨ ⟩ ( )z
k T

k
. B3i

B2

However, this expression is only true for a simple harmonic
oscillator, without the assumption of a mode shape. For a
cantilever, the mode shapes of each vibrational mode have to
be taken into account which yields a correction factor applied
to (B3). As such, the Euler–Bernoulli partial differential beam
equation has to be solved to obtain the transverse deflection of
a uniform and rectangular cantilever without tip-mass. The
solution can be represented by separable space and time
functions representing the mode shape Φi(x) and harmonic
function qi(t) as [49]

å= F
=

¥

( ) ( ) ( ) ( )z x t q t x, . B4
i

i i
1

For a cantilevered beam, it can be shown that the mode shapes
have the form [50]

a a
a a

F = + -
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )x

L
x

L
xsin sinh cos cosh B5i i i

i i

a a
a a

- + -
⎡
⎣⎢

⎤
⎦⎥( ) ( )h

L
x

L
xcos cos sin sinh B6i i

i i

where αi is the solution of the dispersion equation

a a + = ( )cos cosh 1 0, B7i i

which is given by α1=1.875, α2=4.694, α3=7.855 for
the first three modes. The deflection at the tip of the cantilever
of a single mode can now be expressed as

= F( ) ( ) ( ) ( )z L t q t L, B8i i i

which leads to the general expression of the mean squared
deflection

= F⟨ ⟩ ( ) ( )z q L . B9i i i
2 2 2

Using the Equipartition theorem, it was shown that [50]

a a a
=

+( )
( )q

k T

K

3

sin sinh
B10i

B

i i i

2
4 2

and

a aF = +( ) ( ) ( )L 4 sin sinh . B11i i i
2 2

Hence, the mean squared displacement at the free end for the
i-th mode due to Brownian motion is [50]

a
=⟨ ⟩ ( )z

k T

k

12
. B12i

i

B2
4

It can be seen that the thermal vibrations rapidly decrease
with increasing mode number as a function of ai

4. For the
fundamental mode α1=1.875 and

=⟨ ⟩ ( )z
k T

k
0.971 B13B

1
2

can be used as an approximation [50].
However, the output of the piezoelectric sensor is pro-

portional to the area integral over the second derivative of the
mode shape. If the piezoelectric layer is across the entire
width and length of the rectangular cantilever, the integral
simplifies to

ò  = ¢( ) ( ) ( )z x dx z L B14
x

and is hence proportional to the bending angle at the free tip.
Consequently, the thermal noise observed with the piezo-
electric sensor scales equally as if it was observed with the
OBD sensor. The relationship between bending angle and tip
deflection is given by

¢ =( ) ( ) ( )z L
L

z L
3

2
, B15

which leads to the mean squared virtual thermal vibrations as
[50]

= F*
¢⎜ ⎟⎛

⎝
⎞
⎠⟨ ⟩ ( ) ( )z

L
q L

2

3
B16i i i

2
2

2 2

a
= F¢⎜ ⎟⎛

⎝
⎞
⎠ ( ) ( )L k T

K
L

2

3

3
B17B

i
i

2

4
2

a
a a

a a
=

+

⎛
⎝⎜

⎞
⎠⎟ ( )k T

k

16

3

sin sinh

sin sinh
. B18

i

i i

i i

B
2

2

Compared to (B12), it can be observed that the thermal
vibrations decrease only as a function of ai

2. For the funda-
mental mode α1=1.875 and

=*⟨ ⟩ ( )z
k T

k
0.8175 B19B

1
2

can be used as an approximation [50].
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B.2. Spectrum

The mean squared deflection at the end of the cantilever and
the displacement power spectral density are related by [51]

ò òw w w w= =
¥ ¥

⟨ ⟩ ( ) ∣ ( )∣ ( )z S d A G j d , B20z
2

0 0

2

where Sz(ω) is the displacement power spectral density
-( )m Hz2 1 and A can be considered the thermal white noise

drive [52]. G( jω) is the cantilever transfer function from a
force input to displacement output which for the single mode
case takes the form [51]

w =
- +w

w
w

w( )
∣ ( )∣ ( )G j

k1

1
. B21

Q

2
2

22

0
2

2

0
2 2

Using (B19), the mean squared deflection can now be
expressed as

ò w w=
¥

⟨ ⟩ ∣ ( )∣ ( )z A G j d B222

0

2

ò w=
- +w

w
w

w

¥

( )
( )k T

k
A

k
d0.8175

1

1
. B23B

Q

0

2

22

0
2

2

0
2 2

Then, the thermal white noise drive A can be found to be
[51–53]

w
= ( )A

m k T

Q
0.8175

4
. B24B0

Finally, the thermal deflection noise power spectral density as
observed by the piezoelectric sensor is obtained as

w
w

=
- +w

w
w

w( )
( ) ( )S

k T

k Q
0.8175

4 1

1
. B25z

B

Q
0

22

0
2

2

0
2 2

Evaluating (B25) at ω=ω0 yields the thermal deflections at
resonance as observed by the piezoelectric charge sensor

w
w

=( ) ( )N
k TQ

k
0.8175

4
. B26z

B
0

0
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