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Abstract
In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are

implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of

an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflec-

tion signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency

techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the

estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance

metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evalu-

ated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-

mode atomic force microscopy experiments in constant-height mode.
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Introduction
Amplitude modulation is one of the oldest forms of modulation

in analog communication systems, mostly due to its simplicity

of implementation [1]. Not only is the modulation principle

used in many forms of scientific instruments and sensors [2-4],

but numerous fields of research also rely on the improved detec-

tion sensitivity made available by this technique [5-7].
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While the invention of the atomic force microscope (AFM) [8]

in the late 1980s had little to do with modulation to begin

with, a fundamental prerequisite was given by the nonlinear

tip–sample interaction force. With the advent of dynamic

imaging modes [9], in which the microcantilever is excited at

one of its resonance frequencies, the foundation for transmit-

ting information via modulation was established. These imaging

modes are especially suitable for the investigation of delicate

matter and biological samples because of the low tip–sample

forces [10] and have led to the instrument establishing itself

as a key enabling technology for the nanoscale analysis of

objects and materials properties for both research and industry

[11,12].

Dynamic operating modes of the AFM can map the surface

topography of a specimen with high spatial resolution by scan-

ning a sharp tip located at the end of an actively driven micro-

cantilever over the surface of a sample. Due to the nonlinear

tip–sample forces acting on the cantilever, a feedback loop has

to be employed in order to maintain a fixed setpoint with

respect to the sample; the controller performs disturbance rejec-

tion by commanding a nanopositioner in its vertical direction.

As the high-frequency cantilever deflection signal cannot be

controlled directly, low-frequency measurables such as the

change in oscillation amplitude in amplitude-modulation AFM

[11] have to be employed. Other feedback variables such as the

shift in cantilever resonance frequency in frequency-modula-

tion AFM [13] or the phase shift in phase-modulation AFM [14]

have also been used. Situated at the heart of these dynamic

methods, a demodulator is employed to estimate amplitude and

phase of the cantilever deflection signal.

A number of demodulation techniques can be found in the

existing literature, some of which have found regular use in

commercial AFM systems. The performance metrics, tracking

bandwidth and sensitivity to other frequency components, are

especially important in high-speed [15-18] and multifrequency

AFM [19] applications. As the tracking bandwidth directly

affects the achievable scan rate, it should be maximized. How-

ever, this also increases the noise bandwidth. On the other hand,

in multifrequency AFM applications, the sensitivity to other fre-

quency components is of greatest concern. These applications

may include multiple eigenmode contributions [20-22], higher

harmonics [23-25], and multi-tone near-resonance frequency

components [26-28].

For instance, RMS-to-DC conversion [29] is low in implemen-

tation complexity and can achieve high tracking bandwidth, but

it is sensitive to other frequency components. In contrast, the

lock-in amplifier [30-32] is a narrow-band technique that has

been adopted as the industry-wide standard in commercial

AFMs, since it is insensitive to other frequency components but

is limited in tracking bandwidth.

Inspired by image-rejection mixers [33] and modulated–demod-

ulated control [34], a high-bandwidth lock-in amplifier was

recently proposed and implemented to improve upon this

constraint [35]. However, the method is still ultimately limited

by the low-pass filters that are required to account for residual

phase mismatches.

For high-speed AFM applications, as required for the study of

fast biological processes [36,37], the above methods are not

suitable and have led to the development of fast single-wave

detectors in the form of the peak-hold method [38,39] and

coherent demodulator [40-43]. The latter is an all-digital lock-in

amplifier where the characteristic low-pass filter is replaced by

a precise numerical integration scheme. While these methods

can yield fast estimates with low latency, they may not be suit-

able for multifrequency AFM methods where non-integer multi-

ples of the fundamental frequency are present in the deflection

signal.

The demand for a high tracking bandwidth while maintaining

insensitivity to additional frequencies in the signal has moti-

vated the development of filters such as the time-varying

Kalman filter [44] and Lyapunov filter [45,46]. These methods

are based on a linear parametric model of the cantilever deflec-

tion signal and were shown to be extendable for the estimation

of multiple frequencies for multifrequency AFM [47-49].

Observer-based approaches have also been investigated to

provide an alternative feedback signal other than the estimated

amplitude. For instance, if an observer is constructed from the

free-air model of the cantilever, the innovation signal (error

signal between measurement and model output) will contain

information of the disturbance profile during the transient

response of the cantilever [50-53]. In addition, it was shown

that the tip–sample force can be estimated directly by assuming

it takes the form of an impulse train [54]. In this way, the

tip–sample force is estimated directly, thus potentially enabling

high-bandwidth z-axis control by relying on feedback from the

force estimate instead of from the cantilever oscillation ampli-

tude.

This article aims to provide a rigorous experimental compari-

son of the most commonly used demodulation methods for

amplitude-modulation AFM over their entire tracking band-

width range. The methods considered are the lock-in amplifier,

high-bandwidth lock-in amplifier, Lyapunov filter, Kalman

filter, RMS-to-DC conversion (moving-average filter and mean

absolute deviation computation), peak detector and coherent
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demodulator. To make a fair comparison, a widely used digital

signal processing system (LabVIEW) is used and the implemen-

tations are unified to a common sample rate. The performance

metrics are tracking bandwidth, implementation complexity,

sensitivity to other frequency components and total integrated

noise of the amplitude estimate as a function of the tracking

bandwidth. The experimental analysis is concluded by high-

speed constant-height tapping-mode AFM experiments which

highlight the case where the demodulator is the bandwidth

bottleneck in the z-axis feedback loop.

Fundamentals of amplitude modulation
and demodulation
Modulation
A basic amplitude-modulated (double-sideband full carrier)

signal is obtained by mixing a modulating signal ym(t) at a

modulation index M and frequency ωm = 2πfm with a carrier

signal yc(t) with (for the sake of brevity) unity amplitude, phase

, and frequency ωc = 2πfc such that

(1)

In the time domain, this process is shown in Figure 1a, where

the minimum and the maximum levels attained by the ampli-

tude-modulated signal are 1 − M and 1 + M, respectively. It can

be seen from Equation 1 that the modulation process creates

distinct frequency components located at fc and fc ± fm. The

latter components are termed the upper and lower sidebands and

are centered symmetrically around the carrier frequency for

fm < fc, illustrated in Figure 1b. As the modulating frequency

increases, these sidebands move away from the carrier until

they appear at DC and at 2fc for the limit where fm = fc. For the

case where fm > fc, y(t) resembles a distorted wave with side-

bands located at fm ± fc and can therefore no longer be consid-

ered an amplitude-modulated signal because the sidebands are

no longer symmetrically located around the carrier frequency.

For the application in AFM, this case is practically irrelevant as

it corresponds to amplitude changes appearing faster than the

tapping frequency.

Demodulation
The process of demodulation always requires a nonlinear opera-

tion on a signal in order to estimate a baseband signal propor-

tional to the modulation of the carrier. Based on this nonlineari-

ty, the demodulation methods can be broadly classified as

Figure 1: (a) Time-domain example of an amplitude modulated signal
with carrier frequency fc = 50 Hz, modulating frequency fm = 5 Hz, and
modulation index M = 0.75 and (b) its double-sided amplitude spec-
trum. A small residual DC offset is also shown for the sake of
completeness.

methods using rectification (non-synchronous detection) and

methods using mixing with a reference oscillator signal

(synchronous detection). For demodulators of the latter class,

the reference signal can be either a square wave, most common-

ly used for analog implementations, or a sinusoid, most com-

monly used for digital implementations as is the case in this

paper. Within the class of demodulators using mixing, further

classification can be made based on how the 2fc component

from the mixing process is filtered out. While the open-loop

methods rely on either general or numerically precise low-pass

filters, the closed-loop methods employ feedback of the para-

meterized signal states to eliminate this component. An

overview of the demodulator classification is shown in Figure 2.

As will be discussed in the course of this paper, each class has

distinct properties with regards to tracking bandwidth, imple-

mentation complexity and sensitivity to other frequency compo-

nents.

The linear parameterization used by the demodulation tech-

niques based on mixing is derived from a sine wave with known

carrier frequency ωc, unknown amplitude A = A(t) and unknown

phase  of the form

(2)
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Figure 2: Classification of demodulation methods discussed in this
paper.

The signal can be rewritten as a sum of its quadrature and

in-phase components by applying trigonometric identities in

order to obtain a linear parameterization (the time dependency

for slowly changing parameters are left out for the sake of read-

ability)

(3)

As we will make frequent reference to this parameterization, the

entries of the vector c(t) are termed the quadrature and in-phase

sinusoids and the entries of the state vector

are termed the quadrature and in-phase states. In this form,

amplitude and phase can be directly calculated as

(4)

Performance metrics
The performance metrics used for the comparison of the

demodulation methods are implementation complexity, tracking

bandwidth, sensitivity to other frequency components and total

integrated noise of the amplitude estimate as a function of the

tracking bandwidth. The implementation complexity is qualita-

tively evaluated based on the maximum free-running sample

rate achieved by the digital signal processing system. Where

applicable, latencies arising from fixed time-delays in the

implementation of the methods are highlighted. The tracking

bandwidth is defined as the frequency f−3dB, at which the ampli-

tude estimate drops by −3 dB. This figure of merit is important

to determine both the speed of convergence and the amount of

noise suppression in the estimate. This relationship is clearly

identified by plotting the total integrated noise of the amplitude

estimate against the tracking bandwidth for a known input noise

density. Lastly, the sensitivity to other frequency components is

evaluated to determine the ability of each method to filter out

any signal at frequencies other than the carrier frequency of

interest.

Review of demodulation methods
Lock-in amplifier
The lock-in amplifier [30-32] mixes the input signal

(Equation 2) with in-phase and quadrature sinusoids to obtain

(5)

and

(6)

From Equation 5 and Equation 6, it can be seen that the mixing

process generates harmonics at 2fc, which need to be removed

by employing a low-pass filter with , as illustratively

shown in Figure 3b. Further, any residual DC offset in the input

signal will generate a harmonic at fc, which is the reason why

lock-in amplifiers should always be AC-coupled. The order and

cut-off frequency of the low-pass filter directly determines the

tracking bandwidth and hence the noise performance. For

instance, in order to limit the ripple to 1% of the signal, a

−40 dB suppression of the 2fc component is required. A 2nd-

order low-pass filter would achieve this by limiting the band-

width to approximately a decade below the carrier frequency.

A lock-in amplifier described by Equations 4–6 can be realized

digitally with a direct digital synthesizer (DDS) to create the

reference sine and cosine signals, two multipliers, two low-pass

filters, and an output block with square-root functionality and

an arctan calculation method such as polynomial approxima-

tion or the CORDIC algorithm [55] to calculate the phase [43].

Such an implementation is schematically shown in the block

diagram in Figure 3a, where the output block represents Equa-
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Figure 3: (a) Functional block diagram of the lock-in amplifier imple-
mentation and (b) illustrative double-sided amplitude spectrum of the
signal after mixing.

tion 4. A factor of two is necessary to obtain the correct ampli-

tude scaling.

High-bandwidth lock-in amplifier
The high bandwidth lock-in amplifier is a novel extension to the

standard lock-in amplifier technique, which employs phase

cancellation to precisely cancel the 2fc term [35]. The method is

inspired by radio frequency image rejection mixers [33] and

modulated–demodulated control [34,56]. Compared to the stan-

dard lock-in amplifier, this demodulation scheme essentially

requires two additional multipliers, which operate on the input

signal shifted by 90°

(7)

to form the respective output products

(8)

which are added to the output products of the LIA mixers to

exactly cancel the 2fc components

(9)

Although an analog implementation is possible [35], in practice

imperfect phase cancellation due to circuit mismatches still

requires post-mixing low-pass filters. However, as the 2fc terms

are heavily attenuated, the bandwidth of the filters can be in-

creased. This is illustrated in Figure 4b.

Figure 4: (a) Functional block diagram of the high-bandwidth lock-in
amplifier implementation and (b) illustrative double-sided amplitude
spectrum of the signal after the summing stage.

In a digital implementation, the standard lock-in amplifier

implementation has to be extended with two additional multi-

pliers, two summing stages and a 90° phase-shift block H(s) as

shown in Figure 4a. Such an operation can be realized with a

Hilbert transform filter or an all-pass filter tuned to the carrier

frequency [57]. Amplitude and phase are recovered by employ-

ing the output Equation 4 without an additional scaling factor.

Kalman filter
The Kalman filter [58] can generally be considered as a recur-

sive algorithm that makes the best possible trade-off between

modeled and measured information to estimate unknown vari-

ables of a process. Specifically, if the modeling error and the
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noise in the measurement can be considered to have a Gaussian

distribution, the Kalman filter is the minimum variance esti-

mator in the least-squares sense [59]. Typical uses of the

Kalman filter include sensor fusion, smoothing noisy data and

estimation of internal states in numerous applications ranging

from navigation, economics and signal processing [60]. Charac-

teristic and fundamental to its working principle is the exis-

tence of a linear system model that describes the dynamics to be

estimated and the presence of feedback generated from the

Kalman gain, which dictates the rate of convergence. This

structure is schematically shown in Figure 5.

Figure 5: General block diagram of the Kalman filter for demodulation.
Thick lines indicate vector-valued signal paths and thin lines indicate
scalar signal paths.

A linear time-invariant (LTI) state-space model of the signal de-

scribed by Equation 2 can be obtained by choosing  and

 as the state variables and  as the output to yield

(10)

However, due to the sparse nature of the resulting dynamic

matrix A, especially when modeling higher resonance frequen-

cies, this model is generally ill-conditioned for the use in an

observer such as the Kalman filter, which requires an inversion.

This problem is circumvented by applying a time-variant trans-

formation  with [44]

(11)

such that a time-varying but numerically well-conditioned state-

space representation is obtained. This constitutes the process

model of the Kalman filter, which in its discretized form is

given as

(12)

(13)

where , Ts is the sample period,

and w and v are the process noise and the measurement noise

with their respective covariance matrices Q and R. A similar

system description was successfully used in tracking power

system voltage phasors [61]. In this representation, the states

x1,k and x2,k are assumed to be random variables describing the

quadrature and in-phase states of Equation 3. Moreover, Q de-

termines the amount of uncertainty in the model (Equation 12)

and R the amount of noise in the measurement. If R is chosen to

be the standard deviation σ of the Gaussian noise in the sensor

signal y(t) (R = σ2), then Q remains the only tuning variable to

set the tracking bandwidth of the estimated amplitude and

phase. The recursive implementation follows the standard equa-

tions of the Kalman filter [62,63] and are stated in Appendix A.

Amplitude and phase are recovered by employing the output

equations in Equation 4.

Lyapunov filter
The Lyapunov filter is conceptually related to the Kalman filter

in the sense that it uses feedback to correct the estimated quad-

rature and in-phase states of Equation 3 of the linear parameteri-

zation of the signal (Equation 2). Compared to the Kalman

filter, it is significantly less computational expensive as it does

not require the computation of a covariance matrix to deter-

mine the feedback gain. Instead, the gain is a predetermined

constant parameter that is related to the Kalman gain for certain

conditions [46].

In the literature about adaptive control, the Lyapunov filter is

regarded as an online adaptive estimator for which the estima-

tion error relates to the parameter error through a strictly posi-

tive real (SPR) transfer function W(s) [64]. This SPR property is

exploited in designing the update law via a Lyapunov stability

proof to show boundedness of the error, hence the name. An ad-

ditional persistency of excitation property [64] guarantees expo-

nential convergence of the parameters. The estimator can be

written in the compact form [45,46]

(14)
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where γ is the constant gain parameter for tuning the bandwidth

and  is the estimated signal. For simplicity, W(s) can be

assumed to be a constant 1 as any other assumption will limit

the tracking bandwidth [46]. A digital implementation requires

a DDS, four multipliers, two gain blocks, a discrete filter and

two discrete integrators but can also be realized with scalar

operations as shown in Figure 6. The amplitude and phase are

recovered by employing the output equations in Equation 4.

Figure 6: Functional block diagram of the Lyapunov filter implementa-
tion.

RMS-to-DC conversion methods
One of the easiest forms of amplitude estimation is RMS-to-DC

conversion. The root-mean-square (RMS) value yrms of a sinu-

soidal signal y(t) with period T is proportional to the amplitude

of the signal and is defined as

(15)

True RMS-to-DC conversion can be achieved in analog using

either direct or indirect computation. The direct method

performs the squaring, averaging and square-root functionality

using multipliers and operational amplifiers. While the benefit

of direct computation is a large bandwidth, it has a limited

dynamic range due to the squaring stage [29]. Indirect computa-

tion alleviates this problem by employing feedback and divi-

sion of the average output, which significantly improves the

dynamic range but comes at the expense of tracking bandwidth.

A number of direct and indirect analog true RMS-to-DC

converters are available commercially. For a purely sinusoidal

signal, the output of these methods are proportional to the oscil-

lation amplitude. However, biased amplitude estimates are ob-

tained when additional frequency components are present in the

signal.

Moving average filter
Equation 15 can be implemented digitally by obtaining the

moving average using a finite impulse response (FIR) filter [57]

of the squared input signal and passing it through a subsequent

square-root stage. The integration period T in Equation 15 is

related to the length of the (n + 1)-tap moving average FIR filter

as T = n/fs, which dictates the tracking bandwidth of this ap-

proach. The number of samples n should be a half-period

integer multiple of the sample rate fs. A functional block

diagram of this implementation is shown in Figure 7a. As a true

RMS-to-DC converter, the output needs to be scaled by  to

obtain the amplitude as evident from Equation 15. This method

has increasing latency for decreasing tracking bandwidth.

Figure 7: Functional block diagram of (a) moving average filter and
(b) mean absolute deviation measurement to perform digital RMS-to-
DC conversion.

Mean absolute deviation
In tapping-mode AFM, RMS-to-DC conversion was typically

performed using a precision rectifier circuit and a low-pass

filter [36]. Strictly, this is not RMS-to-DC conversion but mean

absolute deviation [29], which calculates the AC average of the

waveform 2A/π. In a digital implementation, this circuit can be

realized with an absolute value block representing the rectifier,

a low-pass filter and an output scaling factor of π/2. The

functional block diagram of this implementation is shown in

Figure 7b.

Peak hold and peak detector method
The peak hold technique [36,38] was specifically developed for

high-speed tapping-mode AFM, enabling video-rate imaging of

Myosin V [15]. The analog implementation of this method

comprises two sample and hold circuits to hold both the posi-

tive and negative peaks of the carrier signal for the duration of a

cycle triggered by using a zero-cross comparator on the phase-

shifted signal. By calculating the arithmetic mean of the outputs

of the two sample and hold circuits and passing it through a
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low-pass filter to set the bandwidth, the output represents the

amplitude of the input signal. The functional block diagram of

this implementation is shown in Figure 8a.

Figure 8: Functional block diagram of (a) the peak hold method and
(b) the modified peak hold method based on a peak detector imple-
mentation alleviating the sample frequency limitation. The blocks
labeled * and ** follow the LabVIEW-specific layout and represent the
“greater” and triggered selector functionality.

While this technique offers high tracking bandwidth, it is more

susceptible to measurement noise and other frequency compo-

nents in the signal as there are only two measurements per

cycle. Furthermore, the presence of harmonics will result in

biased amplitude estimates and complicates the synchroniza-

tion of the sample and hold circuitry. In a digital implementa-

tion, the triggering of the sample and hold blocks can be simpli-

fied with a single zero-cross comparator and knowledge of the

sample frequency and carrier frequency. However, this ap-

proach requires a sufficiently high sample rate to carrier fre-

quency ratio m = fs/fc such that the zero-crossing can be

detected accurately. Then, knowing that the negative peak will

appear at m/4 samples after the zero-crossing and the positive

peak will appear at 3m/4 samples after the zero-crossing, m

must be at least 4, or any integer multiple.

For the digital system used in this work and the chosen carrier

frequency, detecting the zero-crossing with only 6 samples per

cycle is infeasible. As such, a modified peak detection method

is implemented that does not rely on accurate timing [45]. The

block diagram is shown in Figure 8b. The method quickly

tracks rising amplitudes due to the comparator and then slowly

decreases the estimate based on the low-pass filter gain

0 < K < 1. We chose K = 0.5 throughout this paper and the low-

pass filter is used to set the tracking bandwidth.

Figure 9: Functional block diagram of the coherent demodulator imple-
mentation.

Coherent demodulator
A digital low-latency, coherent demodulation method has been

proposed based on mixing and post-integration over a fixed

time window [40-43]. Conceptually, it is an all-digital lock-in

amplifier implementation that mixes the signal to be demodu-

lated with in-phase and quadrature sinusoids

(16)

and implements the low-pass filtering of the harmonic content

with a precise fixed-length numerical integration [41]. If the

input signal is a pure sinusoid and the integration period T is

chosen to be an integer multiple of the drive signal period,

T = mTc, the integrals over yi(t) and yq(t) evaluate exactly to the

in-phase and quadrature states

(17)

The functional block diagram of this implementation is shown

in Figure 9. Of particular importance is the timing and integra-

tion length of this approach. For Equation 17 to hold, the inte-

gration period must be an integer multiple of the sampling

period nTs = mTc, where n is the number of samples in the inte-

gration. However, for an arbitrary carrier frequency the ratio

fs/fc is rarely an integer making this condition hard to meet.

Therefore, a practical solution is to find the smallest n such that

nTs ≤ mTc ≤ (n + 1)Ts and performing a partial integration over

the last sampling interval [41]. Such precise control over the in-

tegration period is achievable in digital systems, however, the

implementation of this method is still challenging.
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Table 1: Qualitative summary of amplitude estimation methods stating the tracking bandwidth tuning parameter, ability to determine a phase estimate
and timing requirements.

method tuning parameter phase estimate timing requirement references

lock-in amplifier LPF flp yes no [30-32]
HBW lock-in amplifier LPF flp yes no [35]
Kalman filter Q yes no [44,47,48]
Lyapunov filter γ yes no [45,46,49]
moving average filter # of samples no yes [29,57]
mean absolute deviation LPF flp no yes [29]
peak hold LPF flp no yes [36,38]
peak detector LPF flp no no [45]
coherent demodulator # of samples yes yes [40-43,65]

By writing out the sum of the discrete-time integral using a

trapezoidal interpolation method [41], it can be seen that

the full-period integration can be directly realized with an

(n + 1)-tap FIR filter with coefficients [1, 2, 2, … 2, 1] as

schematically shown in Figure 10. The impulse response of this

FIR filter is naturally obtained from the convolution of the

rectangular integration window of length mTc with a first-order

hold element of length 2Ts. This is equivalent to passing the

mixed signal through a sinc filter with side-lobes located at

integer multiples of fc/m. Since fs is much higher than fc, the fre-

quency response of the interpolation filter can be neglected.

Figure 10: Schematic signal flow of the numerical integration scheme
employed by the coherent demodulator with and without post-integra-
tion filter. Since , the frequency response of the interpolation
filter can be neglected.

It is clear that if the integration window length is chosen to be

integer multiples of the oscillation period, the sinc filter will

have zeros at the harmonics of the oscillation frequency. If the

integration period can be made infinitely precise, this approach

will remove harmonics from the output. However, as nTs = mTc

rarely holds, the partial integration is difficult to do precisely

and the input signal may contain a DC offset, harmonics will

still appear in the output of the integration method. As such, this

method can be improved by employing a high-pass filter on the

input and post-integration filters [43], either in the form of a

direct notch filter at the second harmonic or by passing the

output through another numerical integrator [41]. Intuitively, as

Figure 10 illustrates, this method can be viewed as a FIR filter

with a triangular impulse response obtained from the convolu-

tion of the two FIR integration filters, resulting in a sinc2 fre-

quency response with significantly reduced side-lobes (for a

direct comparison see Appendix B.

While simulation results show that low latency and high

tracking bandwidth can be achieved for a pure sinusoid by inte-

grating over one period M = 1, in order to reject white noise,

multiple oscillation periods must be integrated which reduces

the tracking bandwidth and increases the latency [42]. In this

work, the trapezoidal numerical integration method with post-

integration filters described in [42,43] is directly implemented

by cascading two FIR integration filters. Alternatively, the

second FIR filter can be replaced by a notch filter at the second

harmonic. The computational efficiency of this method can be

increased by computing the integral cumulatively, as described

in [41,42].

The original work presenting the coherent demodulator inte-

grates over a full period of the fundamental frequency to

achieve the highest tracking bandwidth (corresponding to M = 1

and n = 6 in this work). However, the highest possible tracking

bandwidth can be achieved by setting n = 3, which still guaran-

tees that the component at 2fc is exactly canceled. A compari-

son of the original and half-period coherent demodulator is

presented in Appendix B.

Summary
Table 1 compares the amplitude estimation techniques

discussed in this section. From the classification shown in

Figure 2, methods based on rectification can only obtain ampli-

tude estimates while methods based on mixing with an internal

reference oscillator can recover both amplitude and phase. Ad-
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ditionally, some of these methods require precise synchroniza-

tion between the sampling frequency and reference signal. In

practice, this requires a single system clock for the sampling

time and signal generation. While this property is not a disad-

vantage when using FPGA-based processing, it does affect the

choice of carrier frequencies for the coherent demodulator if the

integral is to be precise.

Experimental evaluation
Experimental setup
The aforementioned demodulation techniques were imple-

mented digitally on a common DSP system (National Instru-

ments USB-7855R with Kintex-7 70T FPGA) using dedicated

LabVIEW blocks and simple scalar operations. This system was

chosen due to its system-oriented graphical design approach,

which makes it an accessible FPGA tool without the need for

knowledge of hardware description languages.

For a fair comparison and to rule out varying amounts of quan-

tization noise, all demodulation methods are run at a normal-

ized sample frequency of fs = 300 kHz. However, this may not

do full justice to the fastest running methods as these tech-

niques might benefit from noise reduction due to over-

sampling. Additionally, the methods requiring accurate timing

will also benefit from more samples per oscillation period.

Implementation complexity
The sample rate achieved by any FPGA implementation, irre-

spective of the hardware, is a function of the sequential compu-

tations which are carried out during each sample period [66].

Therefore the maximum free-running sampling rates, listed

below in Table 2, are used to qualitatively compare the imple-

mentation complexities.

Due to their simple implementations, the mean absolute devia-

tion method, the peak detector and the moving average filter

achieve the highest sampling rates with the mean absolute devi-

ation method approaching the maximum achievable rate of the

FPGA system of 1 MHz. The lock-in amplifier, high-band-

width lock-in amplifier and coherent demodulator achieve the

next highest sample rates, while the Lyapunov filter and

Kalman filter run at around 300 kHz. Although the Kalman

filter is significantly more complex than the Lyapunov filter, the

small difference of only 27 kHz can be associated with the

highly hardware-optimized implementation of the Kalman filter

[44,48], which does not use any continuous states or LabVIEW

specific blocks.

Tracking bandwidth
The tracking bandwidth of each demodulator is determined by

measuring the amplitude tracking frequency response. This was

performed using a laboratory function generator (Agilent

33521A Waveform Generator) to provide a carrier frequency of

fc = 50 kHz, which is amplitude-modulated by a frequency-

swept sine signal using the external modulation input. The

−3 dB modulation bandwidth of the waveform generator was

experimentally verified to be 103.9 kHz, surprisingly low com-

pared to the 30 MHz generator bandwidth but large enough for

the carrier frequency used in this experiment. This FM–AM

concept directly reveals the low-pass filter characteristic of the

demodulators and allows for a direct extraction of the −3 dB

tracking bandwidth.

The results are presented in Figure 11 where four different

tracking bandwidths are plotted. The maximum achievable

tracking bandwidth for each technique is stated below in

Table 2. Apart from the tracking bandwidth, the equivalent

demodulator filter order (determined from the amplitude reduc-

tion per decade for the slowest bandwidth setting) can also be

determined from this plot and is stated below in the Summary

subsection in Table 2. However, as every demodulator operates

nonlinearly, such a classification is only an approximation. As

the moving average filter and coherent demodulator are effec-

tively sinc and sinc2 filters, we have approximated these by

fitting to the local maxima of the side-lobes. From this experi-

ment the linear relationship between the demodulator tuning

variable and resulting tracking bandwidth can be obtained,

which is discussed in more detail in Appendix C.

It can be seen that the lock-in amplifier and the mean absolute

deviation method followed by the peak detector achieve the

highest bandwidth, however, at the expense of passing through

large 2fc components, which are visible in Figure 21a,f,g.

Comparing Figure 21a with Figure 21b, the elimination of the

peaks due to the phase cancellation of the high-bandwidth lock-

in amplifier is clearly visible.

The Kalman filter achieves a maximum bandwidth of around

50 kHz, which corresponds to tracking within one cycle of the

carrier signal without any distortion. However, the Lyapunov

filter achieves a slightly higher maximum bandwidth of around

59 kHz but at the expense of peaking at the carrier frequency.

This fact is due to the filter recovering the sum of the carrier

and the modulating frequency, hence a gain of 2 (6 dB) is

measured at 50 kHz.

The FIR filters in the coherent demodulator and the moving av-

erage filter implementation cause a characteristic sinc/sinc2 fre-

quency response, mathematically originating from the Fourier

transform of the integration window. The maximum tracking

bandwidth of the coherent demodulator is 39.0 kHz without

post-integration filter and 28.6 kHz with post-integration filter.
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Figure 11: Tracking bandwidth frequency response of the demodulators showing the −3 dB tracking bandwidth and equivalent filter order for four dif-
ferent bandwidth settings each.

These values correlate with the time-domain simulation in [42],

which show a convergence after around 1–2 cycles.

Sensitivity to other frequency components
In order to determine the sensitivity to other frequency compo-

nents present in the signal to be demodulated, a frequency

sweep on the carrier signal is performed while the demodula-

tors (where possible) are set to a specific frequency

(fc = 50 kHz) and the demodulation bandwidth is set to a fixed

value of 1 kHz using the relationships plotted in Appendix C.

The resulting plot in Figure 12 shows the attenuation of

frequencies other than the modeled carrier frequency and is

therefore termed off-mode rejection (OMR). As a quantitative

comparison parameter, the OMR is calculated as the gain

difference at the modeled frequency (0 dB) and at 40 kHz as

highlighted in Figure 12 and stated below in Table 2. In this ex-

periment, the noise floor far away from the modeled frequency

is limited by the residual DC-offset caused by the finite quanti-

zation of the digital-to-analog converter (DAC) of the ampli-

tude estimator. However, as all methods are measured with the

same hardware, the relative difference is a good indication of

maximum achievable off-mode rejection values.

The rectification methods that do not make any assumption on

the carrier frequency such as the moving average (MA) filter,

mean absolute deviation (MAD) method and peak detector (PD)

show a constant gain across all frequencies. In other words,

these methods are very sensitive to additional frequency compo-

nents in the signal as they recover all frequencies equally and

are hence impractical for multifrequency AFM.

On the other hand, the lock-in amplifier (LIA) and the high-

bandwidth lock-in amplifier (HBW LIA) yield the best off-

mode rejection of around −52.0 dB owing to the fourth-order
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Figure 12: Off-mode rejection of the demodulators for a carrier fre-
quency of fc = 50 kHz and a tracking bandwidth of 1 kHz. The zoom
box highlights the intersection at the points (50 ± 1 kHz, −3 dB) and the
different filter shapes at the modeled carrier frequency.

Butterworth low-pass filters employed. This result emphasizes

the fact that these methods are very insensitive to additional fre-

quency components in the signal and should be used when

maximum suppression of these components is of priority.

The Lyapunov filter (LYAPF) and the Kalman filter (KF) yield

an off-mode rejection of around −20 dB, significantly lower

than the two lock-in amplifier implementations. This fact is due

to the equivalent first order response of these filters as shown in

Figure 11c,d and stated below in Table 2.

The equivalent order of the coherent demodulator (COH)

follows from the envelope of the sinc2 frequency response. It

can be seen that the off-mode rejection is maximized at frequen-

cies corresponding to the zeros of the sinc2 function. This in

turn means that broadband white noise or noise at frequencies

other than at these zeros cannot be sufficiently suppressed. This

is in contrast to the lock-in amplifier and high-bandwidth lock-

in amplifier which show a constant large off-mode rejection

away from the carrier frequency.

The off-mode rejection of the Kalman filter and Lyapunov filter

can be significantly improved by lowering the tracking band-

width as shown in Figure 13. In order to achieve a rejection of

greater than −40 dB, the bandwidth must be reduced to 100 Hz.

On the other hand, the lock-in amplifier only significantly loses

its off-mode rejection property at large tracking bandwidths of

around 10 kHz. For these large tracking bandwidths, the Butter-

worth nature of the post-mixing low-pass filters is clearly

evident in Figure 13a. The flat region around the modeled fre-

quency where the amplitude is within −3 dB corresponds to

twice the tracking bandwidth. The tuning for the Kalman filter

is described in Appendix C.

Figure 13: Off-mode rejection of (a) fourth-order lock-in amplifier and
(b) first-order Kalman filter for a carrier frequency of fc = 50 kHz at
10 Hz, 100 Hz, 1 kHz, and 10 kHz tracking bandwidth.

Noise evaluation
In order to determine the noise performance, the RMS noise of

the amplitude estimate is evaluated as a function of the tracking

bandwidth. The responses are compared against the theoretical

and experimental response of an “ideal demodulator” repre-

sented by a low-pass filtered white noise process. A schematic

block diagram of the reference experiment is shown in

Figure 14. The band-limited white noise process can be de-

scribed by a constant power spectral density within the band-

width, i.e. [67],

(18)

where fwn is the white noise bandwidth in Hz and A is the power

spectral density in V2/Hz. The RMS noise value σ can be ob-

tained by calculating the total integrated noise (TIN) of the

output of a system G driven by a white noise input which is

given by [67]

(19)

For the perfect band-limited system (Equation 18), G = 1 and

Equation 19 simplifies to

(20)

The reference curves obtained from this experiment (see

Appendix D for details) can be considered as “ideal demodula-
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tors” and are compared to the modulated white noise experi-

ment that is schematically shown in Figure 14.

Figure 14: Schematic block diagram of the reference experiment of
filtering a band-limited white noise process with a variable cut-off fre-
quency low-pass filter and its schematic representation in the frequen-
cy domain.

In this experiment, a laboratory function generator (Agilent

33521A Waveform Generator) providing a 40 kHz bandwidth-

limited white noise signal with an amplitude of 10 mVrms is

first measured directly through a second-order variable cut-off

frequency low-pass filter (Stanford Research SR560 Low Noise

Preamplifier). The acquisition front end of a micro system

analyzer (Polytec MSA-050-3D) is used to capture the time-

domain data sampled at fs = 2.56 MHz for T = 13.11 s. The TIN

is obtained by integrating the noise density estimate from DC to

fs/2 using Welch’s method with 16 averages. Subsequently,

each demodulator is subjected to amplitude-modulated white

noise as shown in Figure 15 with a carrier frequency of 50 kHz

and the demodulated amplitude is recorded for several tracking

bandwidths in the same manner.

For each demodulator, the results are shown in Figure 16. It can

be seen that the lock-in amplifier follows the trend of the refer-

ence filtered white noise process for low tracking bandwidths

but exhibits an exponentially growing TIN when the tracking

bandwidth approaches the carrier frequency. This fact is due to

the increasing 2fc component in the amplitude estimate due to

inadequate filtering of the mixing product. On the contrary, the

high-bandwidth lock-in amplifier does not show this increase

owing to the phase cancellation employed. However, the addi-

tion of the phase-shifted mixing products increases the noise for

lower tracking bandwidths.

The Kalman filter and the Lyapunov filter show an equal trend

without any noise increase until the bandwidth reaches the

carrier frequency. The Kalman filter never crosses this point. In

Figure 15: Schematic block diagram of bandwidth-vs-noise experi-
ment of recovering an amplitude-modulated band-limited white noise
process with demodulators with variable tracking bandwidths and its
schematic representation in the frequency domain.

contrast, the succeeding nonlinearity displayed by the Lyapunov

filter effectively reduces its useful bandwidth to that of the

Kalman filter. The ability of the moving average filter and the

coherent demodulator to reach the lower tracking bandwidth

frequency range is dictated by the highest-order FIR filter that

can be implemented on the FPGA. For the moving average

filter this is n = 384 and for the coherent demodulator with post-

integration filters this limit is n = 144 for the LabView hard-

ware used in this work. Lastly, the mean absolute deviation

method and the peak detector are constrained by inadequate

filtering of the mixing products arising from the absolute value

operation, which significantly limits their practical bandwidth.

At frequencies approaching DC, all methods, including the low-

pass filtered white noise process, approach a constant value due

to digital noise, residual DC-offsets and 1/f noise in the signal.

This experiment highlights that amplitude noise needs to be

taken into account when stating the maximum tracking band-

width of demodulation methods.

Summary
Table 2 summarizes the results of the amplitude estimation

techniques evaluated in this section. The results show that

several demodulation methods are able to obtain amplitude esti-

mates in a single cycle, corresponding to a maximum tracking

bandwidth f−3dB = fc. However, this figure of merit needs to be

assessed with caution as it does not reflect the noise present in

the amplitude estimate due to insufficient filtering of mixing

products. For instance, the lock-in amplifier can only be used up

to 38 kHz (compared to 70 kHz as stated in Table 2) before the

harmonic distortion makes this demodulator unusable. While

the high-bandwidth lock-in amplifier eliminates this problem,

the addition of orthogonal sinusoids increases the noise for low
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Figure 16: Tracking bandwidth vs total integrated noise (TIN) for each demodulator (blue circles) and for a low-pass filtered white noise process (gray
dots) and its analytical expression (dashed black line) as reference. The vertical line indicates the location of the carrier frequency fc = 50 kHz.

Table 2: Maximum free-running sample frequency fs, maximum tracking bandwidth f−3dB, equivalent order and off-mode rejection (OMR) at 1 kHz
tracking bandwidth of each demodulation technique.

method max. fs [kHz] max. f−3dB [kHz] order OMR [dB]

lock-in amplifier 431 70.0 4 53
HBW lock-in amplifier 417 52.6 4 53
Kalman filter 300 50.5 1 20
Lyapunov filter 327 58.7 1 20
moving average 580 43.3 1 0
mean absolute deviation 977 70.9 4 0
peak hold 580 21.7 4 0
peak detector 800 58.5 4 0
coherent demodulator 362 28.6 2 45

bandwidths. In contrast, the Kalman filter and Lyapunov filter,

despite being of low order, show excellent noise performance

over the entire bandwidth of interest. The feasible tracking

bandwidth range for each demodulator can be read from

Figure 16. The sensitivity to other frequency components is

assessed by the off-mode rejection experiment, which measures

the ability to reject white noise or other deterministic frequency

components. Higher off-mode rejection is achieved by increas-

ing the equivalent order of the demodulator.

AFM imaging
In order to demonstrate the effect of insufficient demodulator

bandwidth, a high-speed tapping-mode AFM experiment is con-

ducted with a NT-MDT NTEGRA AFM equipped with a

Bruker DMASP piezoelectrically actuated cantilever. Imaging

was performed in constant-height mode to circumvent the

common z-axis actuator bandwidth limitation. Since the z-axis

controller bandwidth is reduced to the point where the sample

features entirely appear in the amplitude error image, any
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imaging artifacts are either due to insufficient demodulator or

cantilever bandwidth.

In order to render the demodulator the bottleneck, the funda-

mental resonance at f1 ≈ 50 kHz of the DMASP cantilever is

heavily damped with model-based quality factor control [68].

The frequency responses from the cantilever actuation to tip

displacement for various quality factor controller gains are

shown in Figure 17 along side the corresponding tracking band-

widths obtained from drive amplitude modulation. Due to the

integrated actuation of the cantilever, the control method

achieved a quality factor as low as Q1 = 8, resulting in a

tracking bandwidth of 3.3 kHz, adequately matching the first-

order approximation f1/(2Q1) [36].

Figure 17: (a) Frequency response of the DMASP cantilever in open-
loop (blue) and for various quality factor controller gains to reduce the
quality factor as stated in the legend. (b) Tracking bandwidths of the
DMASP cantilever determined via drive amplitude modulation for the
frequency responses shown in (a) and color-coded accordingly.

AFM images of a calibration grating (NT-MDT TGZ3) with

periodic features of height h ≈ 500 nm were obtained at a speed

of 627 μm/s and 1.25 mm/s. Because the scanner rate of the

AFM is limited to 31.37 Hz, the scan areas for the two different

speeds are, respectively, 10 μm × 10 μm and 20 μm × 20 μm.

The image areas have been cropped to approximately the same

region for a better comparison.

The high-speed constant height imaging with the lock-in ampli-

fier, Lyapunov filter and Kalman filter are presented in

Figure 18 and Figure 19. Each row corresponds to the same

demodulator bandwidth. It can be seen that for small demodu-

lator bandwidths, the sample features are not accurately tracked

(first two rows of each figure). By setting a larger demodulator

bandwidth, the sharp sample features are properly tracked,

which is clearly evident in the cross-section plots.

Figure 18: 3D image, 2D image and cross section of amplitude esti-
mates obtained from (a) lock-in amplifier with flp = 100 Hz, (b) lock-in
amplifier with flp = 200 Hz, and (c) Lyapunov filter with γ = 60000 at an
imaging speed of 627.45 μm/s. The scanning direction is along the
positive x- and y-axes.

Figure 19: 3D image, 2D image and cross section of amplitude esti-
mates obtained from (a) lock-in amplifier with flp = 200 Hz, (b) lock-in
amplifier with flp = 300 Hz, and (c) Kalman filter with Q = 0.004, R = 2
at an imaging speed of 1.25 mm/s. The scanning direction is along the
positive x- and y-axes.

Note that the purpose of the AFM images is to emphasize the

need for a fast demodulator bandwidth when all other band-
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width limiting components in the AFM loop are eliminated.

Therefore, the authors perform imaging in constant-height

mode, which entirely removes the z-axis controller and actuator

limitation. Due to the 3.3 kHz cantilever bandwidth, the full

potential of the fastest methods cannot be utilized and hence the

AFM images themselves cannot serve as a means of differenti-

ating between these methods.

Conclusion
This article provides an experimental comparison of the perfor-

mance of conventional and novel digital demodulation tech-

niques over their entire tracking bandwidth. The techniques

include mixing-based methods namely the lock-in amplifier,

high-bandwidth lock-in amplifier, coherent demodulator,

Kalman filter, and Lyapunov filter, as well as rectification-

based methods in the form of a moving average filter, mean

absolute deviation computation and peak detection. The perfor-

mance metrics considered were the tracking bandwidth, imple-

mentation complexity, sensitivity to other frequency compo-

nents and tracking bandwidth vs noise performance.

The 2fc component naturally arises in demodulation schemes

employing mixing, which will distort the output if not

adequately filtered. The lock-in amplifier relies on general low-

pass filters to attenuate these mixing products, limiting the

maximum achievable tracking bandwidth. While the high-band-

width lock-in amplifier eliminates the 2fc component via phase

cancellation, it introduces additional noise at low frequencies

due to the summation of the phase-shifted signals. The coherent

demodulator, being an all-digital lock-in amplifier implementa-

tion, eliminates the mixing products by performing a precise nu-

merical integration over a fixed-length time window. While this

approach is able to achieve a high tracking bandwidth with

minimal latency for short integration windows, a high sample to

carrier frequency ratio is crucial for a high-performance imple-

mentation. The Kalman filter and the Lyapunov filter on the

other hand employ internal feedback of the estimated states to

reject the mixing products, which allows them to maximize the

tracking bandwidth without introducing additional noise in the

amplitude estimate. If maximum suppression of any signal

away from the carrier frequency is the priority, the lock-in

amplifier can still be regarded as the method of choice as it

shows large off-mode rejection and the lowest noise at low

tracking bandwidths.

Among the rectification-based methods, the RMS-to-DC

conversion methods (mean absolute deviation and moving aver-

age filter) have the lowest implementation complexity. Due to

their inability to reject unwanted frequency components they

can only be used at small tracking bandwidths. Ando’s peak

hold method requires accurate timing within the digital imple-

mentation and a high sample to carrier frequency ratio to detect

the zero-crossing accurately. A modified peak hold method

(peak detector) alleviates the sample rate requirement, but insuf-

ficient filtering of the absolute value distortion requires low

tracking bandwidths.

The above discussion highlights that there exist multiple trade-

offs. Although there are many possible application goals, three

of the most common are listed below along with the recom-

mended demodulator.

1. Maximum bandwidth: The Kalman filter provides

maximum tracking bandwidth without introducing

excess noise or distortion. However, the Lyapunov filter

performs comparably but is significantly simpler to

implement.

2. Maximum noise suppression: The lock-in amplifier

provides maximum off-mode rejection when the tracking

bandwidth is low enough to avoid ripple.

3. Minimum implementation complexity: The RMS-to-DC

conversion methods are simplest to implement but are

very sensitive to other frequency components as they do

not provide any off-mode rejection.

Appendix
A Kalman filter equations
The recursive implementation of the Kalman filter equations

follows [62,63] by iterating between the prediction step

(21)

and the measurement update step by calculating the Kalman

gain kk

(22)

The estimated states must then be corrected

(23)

and the covariance matrix can be updated with

(24)

The main computations in Equations 22–24 are graphically

represented by the block diagram shown in Figure 20. Due to
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the time-varying system representation, the calculations in the

prediction steps (Equation 21) are heavily simplified, bene-

fiting a high-bandwidth FPGA implementation that can be real-

ized with scalar operations [48].

Figure 20: Functional block diagram of the Kalman filter implementa-
tion. Thick lines indicate vector-valued signal paths and thin lines indi-
cate scalar signal paths.

B Comparison of coherent demodulator
methods
Figure 21 shows a direct comparison of the coherent demodu-

lator and half-period coherent demodulator using a single FIR

integration filter (Single FIR) and with an additional post-inte-

gration filter (Double FIR). A higher attenuation at integer

multiples of the carrier frequency due to the sinc2 frequency

response of the latter is responsible for the reduction of

harmonics in the output of the demodulator. Notice, that this ap-

proach naturally comes at the expense of tracking bandwidth as

is visible in the magnitude response in Figure 21a. For the half-

period coherent demodulator (n = 3), the single FIR integration

filter approach yields a −3 dB tracking bandwidth of 39.0 kHz,

the addition of the post-integration filter reduces this band-

width to 28.6 kHz. For the full-period coherent demodulator

(n = 6), the single FIR integration filter approach yields a −3 dB

tracking bandwidth of 21.6 kHz, the addition of the post-inte-

gration filter reduces this bandwidth to 15.6 kHz. The increased

latency is also clearly visible from the phase responses in

Figure 21a,b. On the other hand, for a fixed tracking bandwidth

of 1 kHz, the addition of the post-integration FIR filter im-

proves the off-mode rejection drastically as is visible in

Figure 21c because of the faster roll-off of the equivalent sinc2

filter.

C Demodulator tuning
By plotting the tuning parameter against the experimentally de-

termined tracking bandwidth in Figure 22, the region of linear

Figure 21: Maximum tracking bandwidth of (a) coherent demodulator
(n = 6) and (b) half-period coherent demodulator (n = 3) with single FIR
integration filter (blue) and FIR integration filter with post-integration
filter (red). (c) Off-mode rejection at 1 kHz tracking bandwidth of
coherent demodulator with single FIR integration filter (blue) and FIR
integration filter with post-integration filter (red) using fs = 300 kHz,
fc = 50 kHz.

relationship is determined. For the lock-in amplifier, high-band-

width lock-in amplifier, mean absolute deviation method, and

peak detector the tuning variable is the low-pass filter (LPF)

cut-off frequency flp. With a known measurement noise covari-

ance R, the Kalman filter is tuned based on the assumed covari-

ance Q and the Lyapunov filter can be tuned by setting the inte-

grator gain γ. The moving average filter and the coherent

demodulator tuning is achieved by setting the amount of sam-

ples per integration window n.

The methods achieve a near perfect linear relationship across

the entire bandwidths tested on a double logarithmic scale. At

the upper range of the tracking bandwidths, the relationship

function for the Kalman filter flattens out revealing the prox-

imity to the bandwidth limitation. Also noticeable is a slight de-

viation from the linear trend for the Lyapunov filter associated

with the peaking at the carrier frequency.

Note, that this specific plot is only accurate for the particular

hardware and sample frequency chosen in this work. However,

it is useful in determining a particular tuning setting necessary

for a given tracking bandwidth for each demodulator. For exam-

ple, a 1 kHz tracking bandwidth for the Kalman filter is

achieved by Q = diag(10−3, 10−3).
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Figure 22: Relationship between demodulator tuning variable and achievable tracking bandwidth.

D Low-pass filtered white noise
Substituting a first-order low-pass filter system with cut-off fre-

quency flp

(25)

into the general expression for low-pass filtered white noise

(Equation 19) yields

(26)

If the white noise bandwidth is much larger than the cut-off fre-

quency , Equation 26 can be simplified to

(27)

Similarly, for a second-order low-pass filter system of the form

(28)

the total integrated noise evaluates to

(29)

If the white noise bandwidth is much larger than the cut-off fre-

quency , Equation 29 simplifies to

(30)

In Figure 23, the analytical Equations 26 and 29 are plotted

against experimental low-pass filtered white noise processes.

For this purpose, a function generator (Agilent 33500B Wave-
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form Generator) was used to generate 40 kHz bandwidth

limited white noise, which was subsequently low-pass filtered

with a low-noise voltage preamplifier with variable cut-off fre-

quency (Stanford Research SR560). The output of the filter was

captured in the time-domain, sampled at fs = 2.56 MHz for

T = 13.11 s, with the acquisition front end of a micro system

analyzer (Polytec MSA-050-3D). The total integrated noise, is

obtained by integrating the noise density from 0 to fs/2 using

Welch’s method. It can be seen that for both systems, theory

and experiment match very well. In theory the total integrated

noise approaches zero as the filter bandwidth goes to zero. This

discrepancy between theory and experiment can be attributed to

digital noise, residual DC-offsets and 1/f noise in the signal.

Figure 23: Experimental and theoretical total integrated noise of a low-
pass filtered white noise process for a first-order system G1 and a
second-order system G2. The experimental data was fitted to Equa-
tion 26 and Equation 29 using nonlinear least squares.
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