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Finite-Time Learning Control Using Frequency
Response Data With Application to a

Nanopositioning Stage
Robin de Rozario , Andrew Fleming , and Tom Oomen

Abstract—Learning control enables significant perfor-
mance improvement for systems that perform repeating
tasks. Achieving high tracking performance by utilizing
past error data typically requires noncausal learning that
is based on a parametric model of the process. Such
model-based approaches impose significant requirements
on modeling and filter design. The aim of this paper is to
reduce these requirements by developing a learning control
framework that enables performance improvement through
noncausal learning without relying on a parametric model.
This is achieved by explicitly using the discrete Fourier
transform to enable learning by using a nonparametric
frequency response function model of the process. The
effectiveness of the developed method is illustrated by
application to a nanopositioning stage.

Index Terms—Iterative learning control, frequency re-
sponse, motion control, nanopositioning.

I. INTRODUCTION

L EARNING from error data that are obtained from past
operations is an effective approach to improve the per-

formance of mechatronic systems that perform repetitive tasks,
including nanopositioning devices [1], industrial printers [2],
and additive manufacturing systems [3]. More specifically,
repetitive control (RC) can be applied to reduce tracking error
in applications that operate in a continuous fashion [4], [5],
whereas iterative learning control (ILC) enables performance
improvement for systems that operate in a batch-to-batch man-
ner [6]–[9].

Parametric models are often employed in the design of RC
and ILC controllers to achieve high convergence speeds. Fast
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convergence is obtained when the learning filter closely approx-
imates the inverse system dynamics [10], [11]. Consequently,
typical learning filter design approaches are based on inverting
a parametric plant model [12]. However, special measures are
required to ensure that the inverse of a nonminimum phase
(NMP) model is stable. More specifically, NMP zeros imply
that a causal and stable inverse of the system does not exist, and
that a stable inverse is instead anticausal [13]. For an anticausal
inverse, the input corresponding to a desired output can be
determined through a process known as stable inversion [14],
though determining the exact inverse response requires infinite
previewing of the desired output. Consequently, methods that
approximate inverse linear time-invariant (LTI) dynamics with
a finite amount preview have received considerable attention
[12], [15]–[17]. Since these methods are inherently model based,
significant requirements are imposed on learning filter design in
terms of parametric identification and approximate inversion.

Iterative inversion-based control (IIC) is a related method
that avoids the need for parametric models and seems to over-
come the limitations related to bounded inversion. Aside from
the robustness filter that was initially omitted in IIC [18], the
IIC method [19] appears theoretically similar to infinite-time
frequency-domain ILC [20], yet the two methods differ substan-
tially in their implementation. In ILC, updating of the input sig-
nal is typically performed by using filtering operations, whereas
in IIC, the updating is performed by using the discrete Fourier
transform (DFT). The latter enables the use of nonparametric
frequency response function (FRF) models, thereby removing
the need for parametric models. This approach is shown to be
effective [21]–[23] and seems to inherently facilitate noncausal
learning with bounded inputs [24], [25], yet a full analysis of
the potential limitations imposed by NMP zero dynamics has
not yet been established.

In practice, the IIC method is typically implemented in
discrete finite time and is reported to accommodate both batch-
to-batch and continuous processes. Pre-existing analyses of
IIC assume that the system is in a steady state. This can be
approximately achieved in batch-to-batch processes by includ-
ing trailing zeros [19] or by measuring only the final periods
of a periodic task [21]. In this way, updating the input can
be performed offline, as is characteristic of ILC. Similarly,
measuring the steady state of a continuous process can be
approximately achieved by waiting for some time after the input
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was last updated [26]. In this way, the input can be updated,
while the process operates continuously, as is characteristic of
RC. In practice, however, the process is never truly in the steady
state, and pre-existing analyses do not provide clear guidelines to
address the waiting period that is required to avoid the instability
incurred by residual transients.

Although significant progress has been made to reduce
the modeling and design requirements in learning control, at
present, a systematic approach for fast and robust learning for
NMP systems is not yet established. The aim of this paper is
to fill this gap by developing a finite-time FRF-based learning
control framework, supported by key analysis that are lacking
in the present literature. This is achieved in combination with
the following contributions.

C1) A method is developed to stably invert an NMP LTI
system by using its FRF (see Section III).

C2) A robust finite-time IIC (FT-IIC) approach is developed
(see Section II), and guidelines are derived to achieve
high performance and robustness against uncertainties
(see Section IV).

C3) A finite-time analysis of the developed approach is
established to determine the waiting period that is
required to achieve convergence, and it is shown how
the developed approach relates to ILC and RC (see
Section V).

C4) The effectiveness of the developed method is confirmed
by applying it to control a nanopositioner in the contin-
uous implementation setting (see Section VI).

These contributions extend existing IIC as follows. First,
contribution C1 motivates the use of FRF models in learning
by showing that stable inversion of NMP systems can readily
be achieved in the frequency domain [14], [27]. Second, con-
tribution C2 incorporates robustness by explicitly considering
convergence in the presence of uncertainties in the FRF data.
Third, contribution C3 provides guidelines for the effective
implementation of IIC in finite time by considering the effect of
the transient response on the convergence.

This paper extends the initial research reported in [18] by
significantly extending contribution C2, adding contributions
C1 and C3, and by providing rigorous proofs of the results.

A. Notation

The sets of real numbers, complex numbers, and integers are
denoted by R, C, and Z, respectively. The nonnegative real line,
the unit circle, and the complex right half plane are denoted
by R≥0 = [0,∞), C◦ � {ξ ∈ C | |ξ| = 1} and C>0 � {ξ ∈
C | �{ξ} > 0}. For a discrete time (DT) signal f : Z �→ R, the
norms of f are defined as ‖f‖pp =

∑∞
t=−∞ |f(t)|p and ‖f‖∞ =

maxt∈Z |f(t)|, and f is called N -periodic if f(t + N) = f(t)
∀t ∈ Z, with N ∈ N. The spaces with bounded ‖.‖p and ‖.‖∞
norms are denoted by �p and �∞. The discrete time Fourier trans-
form (DTFT) and its inverse are denoted by F∞ and F−1

∞ [28,
Sec. 2.12]. The DFT and its inverse are denoted byFN andF−1

N

and are defined as S(k) = FN {s(t)} � 1√
N

∑N−1
t=0 s(t)e−jωk t ,

s(t) = F−1
N {S(k)} � 1√

N

∑N−1
k=0 S(k)ejωk t , ωk = 2πk

N , k =
0, 1, . . . , N − 1 [28, Sec. 2.21]. Moreover, [A]ij denotes the

Fig. 1. Effect of positioning errors on the image quality in AFM. (a)
Actual and desired probe displacement over time. (b) Distorted image
(the actual features are parallel lines) [30, Sec. 2.6].

ijth element of the matrix A ∈ Cn×m , AH � ĀT , with Ā being
the complex conjugate of A, and ρ̄(A) and σ̄(A) represent the
largest eigenvalue and largest singular value of A. Additionally,
diag{s(k)} is a diagonal matrix whose kth diagonal equals s(k).
In this paper, a single-input single-output LTI DT system G is
considered, which is represented by a minimal realization

G :
[

A B
C D

]

=

{
x(t + 1) = Ax(t) + Bu(t) (1a)

y(t) = Cx(t) + Du(t) (1b)

where x(t) ∈ Rnx , u(t), y(t) ∈ R are the state vector, input,
and output, respectively. The corresponding transfer function
is given by G(z) = C(zI −A)−1B + D and G is stable iff
ρ̄(A) < 1. Moreover, si denotes s at the ith iteration.

II. FINITE-TIME IIC

In this section, the tracking control problem is introduced,
which is motivated by high-speed scanning probe microscopy
(SPM) systems. The FT-IIC method is formulated as a solution
to this problem and is subjected to rigorous analysis in the next
sections.

A. Application Motivation

In SPM, such as scanning tunneling microscopy and atomic
force microscopy, control is crucial to achieve accurate and fast
positioning of the probe with respect to the sample [25] and
largely determines the quality of the resulting images [29], as
illustrated in Fig. 1. In typical SPM applications, the probe or
sample is required to perform a periodic scanning motion. Com-
monly, the mechanical resonance frequencies of the positioning
stage are in the same range as the desired scan rate, such that
achieving an acceptable bandwidth using traditional feedback
approaches is challenging [25], [30]. Furthermore, the system
dynamics may vary due to variations in a sample’s size and
weight.

B. Problem Formulation

In view of the control challenges in SPM, it is desired that the
developed method satisfies the following requirements.

R1) Periodic references are accurately tracked, and un-
known periodic disturbances are rejected.

R2) Convergence is achieved despite plant uncertainties.
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Fig. 2. Control configuration with exogenous output disturbances.

R3) A parametric model of the system is not required.
R4) No additional measures are required to control systems

with NMP zeros.
Motivated by the application to SPM, the following assump-

tions are made.
A1) The process G is a stable LTI system with output

disturbance v(t), such that yi(t) = G(z)ui(t) + v(t),
as shown in Fig. 2.

A2) The reference r is N -periodic and bounded.
A3) The number of samples per period N is known.

Despite the hysteresis that is induced by piezo-based actuation
in SPM applications [21], Assumption A1 is commonly made
[25] and is especially accurate when a stabilizing low-bandwidth
feedback controller is employed that partly linearizes the sys-
tem, as briefly discussed in Section VI.

The problem of iteratively improving the tracking perfor-
mance of periodic references is formulated as follows.

Problem 1: Given an N -periodic reference r(t), define

ei(t) � r(t)− yi(t) (2)

where yi(t) is as given in Assumption A1, and where G(z) is
given by (1). Determine the N -periodic input ui(t) such that
limi→∞ ei(t) is small in an appropriate sense.

In the next section, a frequency-domain approach is proposed
as a solution to this periodic tracking problem.

C. Finite-Time IIC

The following update law represents the proposed FT-IIC
method, which aims to provide a solution to Problem 1 using an
FRF model of the process.

Proposition 1: Given an initial input U0(k), update Ui(k) as,

Ui+1(k) = Q(k)
(
Ui(k) + α(k)Ĝ−1(k)Ei(k)

)
∀k (3)

where Ĝ(k) is an FRF model of G(ejωk ) that satisfies Ĝ(k) �= 0
∀k, and Q(k) ∈ R≥0 and α(k) ∈ R≥0 are referred to as the
robustness and learning coefficient, respectively.

The key attribute of FT-IIC is the explicit use of the DFT
to update the input. This enables the use of the nonparametric
FRF model Ĝ(k) and ensures satisfaction of requirement R3.
This is essentially different from typical ILC approaches, in
which the update is performed by filtering the time-domain
signals [6]. The FRF model Ĝ(k) is typically considered to be
a reliable approximation of the plant, and its accuracy can be
quantified using various techniques [31]. The coefficients Q(k)
and α(k) are used to enable robust convergence and to regulate
the learning speed. These coefficients can be tuned separately
for each frequency by assuming that the output is approximately
in the steady state, since, if Y (k) ≈ G(ejωk )U(k), the evolution
of Ui(k) for frequency k is independent of all other frequencies.

Fig. 3. In the batch-to-batch setting, each task starts from the same
initial condition x0. After w periods, a single period of N samples is
measured when the system is approximately in the steady state (gray
intervals). The periodic input is updated based on the measured error.

Fig. 4. In the continuous setting, the system starts from initial condition
x0, which is not reset between updates. After w periods, a single period
of N samples is measured when the system is approximately in the
steady state (gray intervals). The periodic input is updated based on the
measured error.

This approach is enabled by the following implementation
framework, where the distinction between batch-to-batch and
continuous updating is made explicit in Section V-A and Figs. 3
and 4.

Remark 1: Since the DFT is an integral part of FT-IIC, the
results in this paper apply to N -periodic and time-limited signals
[28]. Time-limited tasks are naturally implemented in a batch-
to-batch fashion with w = 0, which removes the freedom to wait
for the steady state. Furthermore, for N →∞, the classical IIC
and infinite-time ILC methods are reobtained.

D. Outline

The remainder of this paper is structured as follows. In light
of requirement R4, it is shown in Section III that (3) results
in bounded inputs, even when G(z) is NMP. In Section IV,
the convergence behavior and asymptotic properties of (3) are
derived under the assumption that the system is in the steady
state, which results in tuning guidelines for Q(k) and α(k) to
satisfy requirements R1 and R2. In Section V, finite-time effects
are explicitly analyzed by means of a lifted signal framework,
which results in conditions on the number of waiting periods
w to ensure convergence. In Section VI, the developed FT-IIC
method is applied to a nanopositioning stage.

III. FOURIER-TRANSFORM-BASED STABLE INVERSION

In this section, it is shown that in contrast to inverse-model-
based learning, the presented inverse-FRF-based approach re-
sults in bounded signals, irrespective of the potential presence
of NMP dynamics. This is shown by explicitly solving the stable
inversion problem in the frequency domain, which constitutes
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Algorithm 1: FT-IIC.

Given an initial periodic input u0(t).
1) Batch-to-batch: reset the system to a certain initial x0.

Continuous: do not reset the system.
2) Apply the N -periodic input ui(t) to the system and wait

w periods until the output yi(t) is approximately in the
steady state. Then, record the tracking error ei(t) (2).

3) a) Obtain Ui(k) and Ei(k) by applying the DFT.
b) Update Ui by means of (3) for each frequency k.
c) Obtain ui+1(t) by applying the IDFT.

4) Set i←i+1 and repeat from step 1) until ei(t) converges.

contribution C1. More specifically, the aim of this section is to
derive conditions under which

u(t) = F−1
N {G−1(k)FN {r(t)}}

is guaranteed to be bounded while satisfying y(t) = r(t).

A. Stable Inversion in the Time Domain

The stable inversion problem is first considered in the time
domain. Considering (2) for v(t) = 0 shows that the perfect
tracking input is obtained by inverting the relation Gu = r.
Ensuring that u(t) is bounded is known as the problem of stable
inversion, which is formulated as follows [14].

Problem 2 (Stable inversion): Let G : u �→ y be a DT-LTI
system. Then, for a certain r ∈ �∞, determine u ∈ �∞ such that
(1) holds in addition to y(t) = r(t) ∀t ∈ Z.

A time-domain solution [14] follows by inverting the state-
space realization of G, i.e., (1), which is given by

G−1 :
[

Ã B̃

C̃ D̃

]

=
[

A−BD−1C BD−1

−D−1C D−1

]

.

Note that this can be extended to the case with D = 0 by using
input or output previewing [32]. When G is NMP, at least one
of the zeros of G(z) lies outside of the unit circle. This renders
G−1 unstable in a causal sense, since the zeros of G are equal to
the poles of G−1. If none of the eigenvalues of Ã lies on the unit
circle, a similarity transformation η = T x̃ can be performed that
decouples the dynamics in a stable and antistable part [14]. This
dichotomic split results in

G−1 :

⎧
⎪⎪⎨

⎪⎪⎩

[
ηs(t + 1)

ηu (t + 1)

]

=

[
Ãs 0

0 Ãu

][
ηs(t)

ηu (t)

]

+

[
B̃s

B̃u

]

y(t)

u(t) =
[
C̃s C̃u

]
η(t) + D̃y(t).

A bounded yet noncausal u is obtained by iterating ηs forward
in time and ηu backward in time for y = r, i.e.,

ηs(t) =
t−1∑

i=−∞
Ãt−i−1

s Bsy(i), ηu (t) = −
∞∑

i=t

Ãt−i−1
u Buy(i).

This approach solves Problem 2 if G has neither zeros nor
poles on C◦ [14]. Notably, this time-domain approach requires
a state-space model of the system. Next, a frequency-domain
approach is developed that only requires an FRF model.

B. Stable Inversion in the Frequency Domain

In this section, Problem 2 is solved by using a Fourier
transform approach that does not explicitly use a parametric
model. The key aspect in this approach is that boundedness is
guaranteed if the Fourier transforms are well defined.

Lemma 1: Let G be a stable system satisfying (1). If for a
certain r, R(ω) = F∞{r(t)} exists, and if G(ejω )−1R(ω) is
bounded ∀ω ∈ (−π, π], then

u = F−1
∞ {[G(ejω )]−1F∞{r(t)}} (4)

is such that u ∈ l∞, and (1) holds with y(k) = r(k) ∀k ∈ Z.
A proof of this lemma is provided in Appendix A. This lemma

shows that the DTFT-based operation (4) solves Problem 2
and only requires the FRF G(ejω ). Note that G(ejω )−1R(ω)
is bounded if G(z) has no zeros on C◦, yet this does not allow
for cancellations between G(ejω )−1 and R(ω). Furthermore,
the requirement that F∞{r} exists can be relaxed by adopting
the notion of generalized DTFTs [14].

Remark 2: In Lemma 1, u(t) is noncausal if G is NMP. This
is shown by considering G(z) as the bilateral Z-transform [28,
Sec. 2.13] of the impulse response of G, and G−1(z) as the z-
componentwise inverse of G(z). A bounded impulse response of
G−1(z) is obtained by applying the inverse bilateral Z-transform
over the contour z = ejω , such that the region of convergence
includes C◦. Since G(z) has no zeros on C◦, this results in a
bounded impulse response, which is noncausal if G(z) possesses
zeros outside the unit disc [28, Sec. 2.13.2].

In conclusion, the DTFT can be used to solve the stable
inversion problem by using a continuous FRF model. Next, the
DFT is considered to enable the use of a discrete FRF.

C. Periodic Steady-State Stable Inversion

To apply the results of Lemma 1 to finite-time signals, the
DTFT is replaced by the DFT on a finite grid of frequencies.
Truncating the infinite-time solution is exact if the involved
signals are periodically repeating outside the considered time
interval [28, Sec. 2.21]. Consequently, (4) can be applied by
using the DFT to obtain the periodic input sequence that leads
to a given desired periodic output, even if the system is NMP.

Theorem 1: Let G be a stable system satisfying (1) with FRF
G(ejωk ) = C(ejωk I −A)−1B + D, ωk ∈ Ω,

Ω �
{

ωk ∈ R
∣
∣
∣ ωk = 2π

N k, k = 0, . . . , N − 1
}

. (5)

If for a certain N -periodic r, R(k) = FN {r(t)} exists, and if
G(ejωk )−1R(k) is bounded ∀ωk ∈ Ω, then

u(t) = F−1
N {[G(ejωk )]−1FN {r(t)}}

is such that u ∈ l∞, and (1) holds in addition to y(k) = r(k)
k ∈ 0, . . . , N − 1, where u and y are N -periodic.

Proof: With the fact that x̃(k) = F−1
N {FN {x}} = x(k)

∀k ∈ Z if x is N -periodic [28, Sec. 2.21], a proof follows
identically as the proof of Lemma 1 by using FN instead of
F∞, and by restricting u, x and y to be N -periodic signals. �

This theorem states that the bounded N -periodic input u that
results in the tracking of an N -periodic reference r can be
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computed by using an FRF model of G that is defined on the
DFT grid Ω (5). Note that this requires that G is in the steady
state, i.e., the state x is N -periodic.

In this section, the theoretical motivation for FT-IIC (3) is
provided by developing a frequency-domain approach to the
stable inversion problem. It is shown that bounded and possibly
noncausal solutions are automatically obtained by using an
FRF model in combination with the DFT. Consequently, FT-IIC
satisfies requirement R4. In the next section, FT-IIC is analyzed
in the frequency domain.

IV. STEADY-STATE ANALYSIS

In this section, the convergence behavior and asymptotic
properties of (3) are derived. These results lead to guidelines
to tune Q(k) and α(k), which constitutes contribution C2.

In the remainder of this section, it is assumed that the N -
periodic steady-state output of G is measured, such that

Yi(k) = G(ejωk )Ui(k) + V (k) (6)

where V is a bounded trial-invariant disturbance, i.e., Vi = V
∀i. Furthermore, the dependence on k is occasionally omitted
to facilitate a clear exposition.

A. Optimal FT-IIC

The FT-IIC update law, as given by (3), is shown to connect
to a regularized least squares optimization problem that is
commonly posed in norm-optimal ILC [2]. This reveals the
particular roles of Q(k) and α(k).

Lemma 2: Consider the following optimization problem:

Ui+1(k) = arg minJ (k) ∀k

J = |Êi+1|2 + wu |Ui+1|2 + wΔu |Ui+1 − Ui |2

where wu (k), wΔu (k) ≥ 0 are weights and Êi � R− ĜUi −
V , where Ĝ is an FRF model of G. The FT-IIC update law given
by (3) is the solution of this optimization problem if

Q =
|Ĝ|2 + wΔu

|Ĝ|2 + wΔu + wu

, α =
|Ĝ|2

|Ĝ|2 + wΔu

. (7)

A proof of this lemma is provided in Appendix B. Considering
(7) for wΔu

= 0 shows that α(k) = 1 corresponds to the case
for which the rate of change of Ui(k) is not restricted from one
trial to the next. Similarly, taking wΔ = 0 shows that Q(k) = 1
corresponds to the case for which |Ui+1(k)| is not restricted.
In the next sections, additional frequency-domain tuning design
guidelines are derived for Q(k) and α(k) to achieve disturbance
rejection, monotonic convergence, and robustness against plant
variations, respectively.

B. Disturbance Rejection

High performance is achieved if the tracking error is suffi-
ciently small. If the input updating (3) converges, the resulting
asymptotic tracking error is as follows.

Lemma 3: If the FT-IIC update, as given by (3), converges,
then the asymptotic error is given by

E∞(k) =
1−Q(k)

1−Q(k)
(

1− α(k)G(ejω )Ĝ−1(k)
)Rv (k) (8)

where Rv � R− V is the total periodic disturbance.
A proof of this lemma is provided in Appendix C. From (8),

it is clear that perfect rejection is obtained for Q(k) = 1. Con-
sequently, requirement R1 is satisfied, as long as convergence
is achieved with Q(k) = 1. Next, it is shown that this can be
achieved if the FRF model is sufficiently accurate.

C. Monotonic Convergence

To avoid bad learning transients [6], [33], it is key that Q(k)
and α(k) are chosen such that (3) results in monotonically
converging sequences, which are defined as follows.

Definition 1: A sequence {Xi}, X ∈ C, is said to conver-
gence monotonically in the absolute value to a fixed point
X∞ ∈ C if there exists a κ ∈ [0, 1) such that

|Xi+1 −X∞| ≤ κ|Xi −X∞| ∀i

where κ−1 is referred to as the rate of convergence.
The following theorem provides a sufficient condition such

that the FT-IIC input sequences converge monotonically.
Lemma 4: The sequence {Ui(k)} resulting from (3) con-

verges monotonically at frequency k, at a rate of κ−1(k), if

κ(k) �
∣
∣
∣Q(k)

(
1− α(k)Ĝ−1(k)G(ejω )

)∣
∣
∣ < 1. (9)

A proof to this lemma is provided in Appendix D. From
(9), it is clear that both Q(k) and α(k) can be used to achieve
monotonic convergence. Note that in IIC [19], Q(k) = 1 such
that only α(k) can be used to achieve convergence. In the next
section, it is shown that by taking Q(k) �= 1, performance can
be exchanged for robustness against plant variations, which is a
mechanism that is lacking in pre-existing IIC approaches.

D. Robust Convergence

The requirement of robust convergence, R2, can be analyzed
by considering the following additive uncertain model set:

G(Δ, k) = Ĝ(k) + Δ(k), Δ(k) ∈Δ

Δ � {Δ ∈ C | |Δ| ≤ δ, δ ∈ R≥0} (10)

where Ĝ is the nominal model and Δ is a bounded uncertainty.
Such a description can be estimated by using FRF identification
methods [31, Sec. 7.2.4]. By assuming that the true FRF is
captured by the model set, i.e., ∃Δ∗ ∈Δ, G = G(Δ∗), robust
convergence can be analyzed by substituting (10) into (9)

κ(Δ, k) = |Q(k) (1− α(k)ϕ(k)) | < 1

ϕ(Δ, k) = 1 + Ĝ−1(k)Δ(k). (11)

More specifically, (3) is said to converge robustly with respect to
(10), if (11) is satisfied ∀Δ ∈Δ. In the case of perfect tracking,
i.e., for Q = 1, then (11) can only be satisfied if ϕ(Δ) ∈ C>0,
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since by definition, α ≥ 0. If convergence is not achieved with
respect to the true system, i.e., ϕ(Δ∗) /∈ C>0, then convergence
is achieved by adjusting the phase of the nominal model by 180◦,
i.e., −Ĝ−1(k), since ϕ(Δ∗) ∈ C>0 in this case. However, if
|ϕ(Δ∗)| � 1, (11) requires that α� 1, and consequently, κ ≈
1, which implies slow convergence. This is alleviated by taking
Q(k) < 1, which increases robustness, at the cost of perfect
tracking. The following lemma provides the key to achieving
robust convergence by suitable design of Q and α.

Lemma 5: If ∃Δ∗ ∈Δ such that G = G(Δ∗) and if α(k) ∈
(0, 1], then condition (11) is independent of α(k). Furthermore,
if α(k) = 1, then (11) is satisfied ∀Δ ∈Δ if

⎧
⎨

⎩

Q(k) = 1, for τ(k) > 1

Q(k) < τ, for τ(k) ≤ 1
, τ(k) � |Ĝ(k)|

δ(k)
. (12)

A proof of this lemma is provided in Appendix E. In this
section, it is shown that robust convergence is achieved by proper
choice of Q(k) and α(k). Next, these results are reformulated
into design guidelines.

E. Design Guidelines

Based on the developed insights, design guidelines are for-
mulated to achieve high performance and robust convergence
such that requirements R1 and R2 are satisfied by FT-IIC.

The following guideline presents an approach to maximize the
performance in a trial-and-error fashion in case only a nominal
FRF model is available.

Design Guideline 1: Given a nominal FRF model Ĝ(k):
1) set Q(k) = 1, and through preliminary experiments, set

α(k) ∈ (0, 1] ∀k as high as possible such that the input
converges to a signal that is approximately identical for
each trial as opposed to increasing without bounds;

2) if convergence is not achieved for some k, change the
phase of Δ(k) by setting α(k)Ĝ−1(k)→ −α(k)Ĝ−1(k)
and repeat the above;

3) in case |α(k)| � 1 for some k, set Q(k) < 1 to increase
the convergence speed and robustness.

The next guideline summarizes the approach in case robust-
ness against plant variations is critical, or in case a trial-and-error
approach is unacceptable. This requires an additive uncertain
description as given by (10).

Design Guideline 2: Given a nominal FRF model Ĝ(k) and
additive uncertainty Δ(k) such that (10) holds, set Q(k) as given
by (12) and set α(k) = 1 ∀k.

In this section, the convergence behavior and asymptotic
properties of (3) are derived. This results in design guidelines
for Q(k) and α(k), thereby providing an FT-IIC framework, as
proposed in Section II, that satisfies the posed requirements.

In the next section, the effect of the transient response is
analyzed in the time domain.

V. FINITE-TIME ANALYSIS

In the previous sections, it is assumed that the output is mea-
sured during the steady state. In practice, there is a contribution
of the transient response that results from starting up the system,

or from updating of the periodic input signal, which decays as
the systems operates. In this section, the effects of transients are
explicitly analyzed with respect to the convergence of FT-IIC.
This results in conditions on the number of waiting periods
w that are required to achieve convergence in the presence of
transients, which constitutes contribution C3.

A. Finite-Time Behavior

If the input to G is periodic, then the output converges to
a periodic signal. Depending on the pole locations, the steady
state is approximately obtained after some periods w. Hence,
FT-IIC can be applied in a setting that allows for some waiting
time between the input updating. In this section, two setting
are considered. The first is the batch-to-batch setting, where the
system resets after each update, as shown in Fig. 3, for w = 3.
The second is the continuous setting, where the system operates
without resetting, as shown in Fig. 4.

To analyze the transient behavior, a lifted signal description
is employed that enables the consideration of an entire period
at once. For a signal s(t), the corresponding lifted signal s̄〈n〉 is
given by grouping N consecutive samples of the signal

s̄〈n〉 �
[
s(Nn) s(Nn + 1) . . . s(Nn + N − 1)

]�
, n ∈ Z.

For N -periodic signals, it holds that s̄〈n〉 = s̄ ∀n, since s(t) =
s(t + N) ∀t. By lifting u(t) and y(t) of G, as given by (1),
a lifted system Gl : ū〈n〉 �→ ȳ〈n〉 is obtained, whose realization
follows by evaluating (1a), (1b), and x(0) = x0 as in [34]

Gl :

⎧
⎪⎪⎨

⎪⎪⎩

x(N(n + 1)) = Fx(Nn) + Mū〈n〉 (13a)

ȳ〈n〉 = Hx(Nn) + Jū〈n〉 (13b)

x(0) = x0

[
F M
H J

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AN AN−1B . . . AB B

C h(0) 0 . . . 0

CA h(1) h(0) 0

...
...

. . .
. . .

...

CAN−1 h(N − 1) . . . h(1) h(0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where h(t) are the Markov parameters, i.e., h(t) = D for t =
0 and h(t) = CAt−1B for t ≥ 1. This framework allows the
analysis of FT-IIC in the time domain, as treated next.

B. FT-IIC in the Time Domain

A number of auxiliary results are derived that enable the
transient analysis of FT-IIC in the next section. First, the FT-IIC
update law (3) is formulated in the lifted time domain. This
requires lifting of the DFT operation, which is facilitated by
the DFT matrix F ∈ CN×N , i.e., [F ]hk = 1√

N
μhk for h, k =

0, . . . , N − 1, where μ = e−
2π j
N [35, Sec. 1.4.1]. It follows from

the definition of the DFT that S̄ = F s̄, where S̄(k) results from
lifting S(k). Furthermore, it holds that s̄ = FH S̄, since F is
a unitary matrix [35, Sec. 4.8.1]. This formulation enables the
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connection of the lifted frequency-domain steady-state behavior
to the lifted time domain.

Lemma 6: Given a lifted system Gl as given by (13). If the
state is periodic, i.e., if x(N(n + 1)) = x(Nn), then ȳ = Jpū,
where Jp is the periodic response matrix

Jp � H(I − F )−1M + J. (14)

Furthermore, Jp is equivalent to

Jp = FH diag{G(ejωk )}F (15)

where F is the DFT matrix and G(ejωk ) the FRF of G.
A proof of this lemma is provided in Appendix F. This lemma

enables the formulation of the FT-IIC update law (3) in the lifted
time domain.

Lemma 7: A lifted representation of (3) is given by

ūi+1 = Q
(
ūi + ΛĴ−1

p ēi

)

Q � FH diag{Q(k)}F , Λ � FH diag{α(k)}F (16)

k = 0, . . . , N − 1, where Ĵp corresponds to the FRF model
Ĝ(k) and is given by Lemma 6, and F is the DFT matrix.

Proof of Lemma 7: Lifting (3) results in

Ūi+1 = diag{Q(k)}
(
Ūi + diag{α(k)G−1

m (k)}Ēi

)
.

Using that S̄ = F s̄ and FH S̄ = s̄ in combination with Lemma
6 directly results in (16).

By property ofF , the matricesQ, Λ, and Jp are circulant [35,
Sec. 4.8.2] and, thus, correspond to time-invariant and noncausal
linear mappings, as was similarly discussed in Remark 2.
Furthermore, note that Ĵp is invertible if Ĝ(k) �= 0 ∀k, which is
in agreement with Theorem 1.

As established in Section V-A, the output used in the update
can be obtained by waiting until the steady state is approximately
attained. To analyze the effect of remaining transients, consider
the following explicit expression of the output during the wth
period since the input was last updated.

Lemma 8: Given Gl as given by (13). If Gl is excited by an
N -periodic input ū, then the lifted output during the wth period
is given by

ȳ〈n+w 〉 = HFw x(Nn) + Jtū
〈n〉 (17)

Jt � H

w−1∑

j=0

FjM + J. (18)

Proof: A proof follows directly by forward recursion of (13)
with a periodic input ūi . �

In this section, lemmas are presented that facilitate a time-
domain convergence analysis of FT-IIC, as treated next.

C. Time-Domain Convergence Analysis

Combining the auxiliary lemmas enables the main result of
this section, which considers a nonconservative convergence
analysis for both the batch-to-batch and continuous setting.

Theorem 2: Let G be a stable system satisfying (1) and
consider the tracking error given by (2). If FT-IIC is used to
iteratively update the input as given by (16), where the output is
measured after waiting w periods, then the following holds.

1) Batch-to-batch: If updating is performed in a batch-to-
batch fashion, as shown in Fig. 3, then ūi converges if
and only if ρ̄(Z) < 1 and converges monotonically in the
2-norm if σ̄(Z) < 1, with Jt given by (18) and

Z = Q(I − ΛĴ−1
p Jt).

2) Continuous: If updating is performed in a continuous
fashion, as shown in Fig. 4, then the closed-loop system
is asymptotically stable if and only if ρ̄(A) < 1, with

A =

[
Fw

∑w−1
j=0 FjM

−QΛĴ−1
p HFw Z

]

. (19)

Furthermore, if the model is perfect, i.e., Ĝ(k) = G(ejωk ),
and if α(k) = 1 ∀k, then Z is identical to

Z◦ = QJ−1
p

(
HFw (I − F )−1M

)
. (20)

A proof to this theorem is provided in Appendix G. This
theorem provides conditions for the convergence of FT-IIC in
the presence of transients. More specifically, in the batch-to-
batch setting, stable evolution of ū〈n〉 is governed by ρ̄(Z).
Consequently, ρ̄(Z) < 1 provides a condition on the number
of waiting periods w that are required to achieve convergence,
which is typically small. To see this, consider the case where the
model is perfect, i.e., Z equals Z◦, (20). Using that ρ̄(Fw ) =
ρ̄(A)N ·w , where ρ̄(A) < 1 by assumption, it follows readily
that F , and therefore Z◦, converges to 0 for moderate w and N .
This holds similarly for the continuous setting, in which case
the matrix A is considered to also guarantee the stability of the
state x.

Remark 3: For w = 0, (17) satisfies ȳ〈n〉 = Hx(Nn) +
Jū〈n〉. Consequently, the lifted ILC problem is recovered in the
batch-to-batch setting, and the lifted RC problem is recovered in
the continuous setting [34]. Hence, if w = 0 and depending on
the way in which FT-IIC is implemented, it can be interpreted ei-
ther as ILC or RC. Comparatively, FT-IIC prescribes the inverse
FRF model-based learning matrix L = ΛJ−1

p , whereas several
alternative methods exist to design this matrix for lifted ILC
or RC [36]. Such methods implicitly account for the transient
effects, whereas the influence of the transients is mitigated by
waiting in FT-IIC, i.e., by taking w > 0.

Remark 4: In practice, a waiting time consisting of an arbi-
trary number of samples can be used, as long as the updated
periodic input is synchronized with the original input upon
application to the system, for example, by using the circular
shift operation [28].

In this section, a time-domain analysis of the developed FT-
IIC is treated, which shows that convergence can be achieved
by waiting for an approximate steady state. In the next section,
the FT-IIC approach is applied to control a nanopositioner.
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Fig. 5. (a) Three-axis nanopositioner designed by K. K. Leang at the
University of Utah. The axes contain a 12-mm-long piezoelectric stack
actuator of the type, Noliac NAC2003- H12, with a free displacement
of 12 μm at 200 V, which is extended by mechanical amplifiers to a
total range of 30 μm. Each actuator is driven by a PiezoDrive PDL200
voltage amplifier. A Microsense 6810 capacitive sensor and 6504-01
probe, with 2.5-μm/V sensitivity, is used to measure the position of the
moving platform. Two SRS SIM965 analog filters serve as reconstruction
and antialiasing filters, respectively, by configuring these as Butterworth
filters with a cutoff frequency of 3 kHz and a slope of−12 dB. (b) Closed-
loop control configuration.

Fig. 6. (Top) Reference r(t) . (Bottom) PSD of r(t) . The point
indicates the contribution at ω∗k = 3050 Hz.

VI. HIGH-PRECISION PERIODIC NANOPOSITIONING

In this section, the potential of the FT-IIC method is demon-
strated by achieving precise control of a nanopositioning stage,
which constitutes contribution C4.

A. Control Problem

The control objective is to perform a periodic scanning motion
with the x-axis of the nanopositioner shown in Fig. 5(a). A single
trial takes 0.2 s and consists of ten periods of a triangle wave with
an amplitude of 5 μm, shown in Fig. 6. A feedback controller is
used to provide a benchmark level of performance and is given
by

Cf b(z) =
6.1078 · 10−6(z + 1)4(z − 0.9844)

(z − 0.9099)2(z − 0.975)(z − 1)(z − 0.7007)

which achieves a bandwidth of 90 Hz and is operated at a
sampling frequency of 20 kHz. The FT-IIC method is applied
to update the feedforward signal ui , as shown in Fig. 5(b).

B. Implementation

The FT-IIC method is implemented in a continuous setting,
as presented in Section II and as shown in Fig. 4. The system is

Fig. 7. Bode plot of the FRF Ĝ(k) , and a first-order estimate of its
standard deviation . The point indicates the FRF at ω∗k = 3050
Hz.

first brought into continuous operation by means of the feedback
controller. At the end of each trial, a trigger indicates that data
acquisition can start. In this way, sequences of exactly N =
4000 samples are obtained. After initialization, the input ui is
iteratively updated after three periods. The first period is used
for the system to settle to the steady state, i.e., w = 1. During
the second period, ei is measured. The computation of ui+1 is
performed during the third period by using the update law (3),
wherein the DFT operation and its inverse are computed using
the fast Fourier transform algorithm. Optimal time-distributed
transform algorithms facilitate computation within one sample
period [37], but are beyond the scope of the current exposition.

C. Application of FT-IIC

In the closed-loop configuration, G is the process sensitiv-
ity. The FRF estimate Ĝ(k) = Ĥ(k)(1 + Ĥ(k)Cf b(ejωk ))−1

is constructed by using an estimate of the process Ĥ . An H1
estimator of H(k) is obtained by exciting the system with a
full spectrum periodic input in open loop, and by dividing the
average cross power spectrum density (PSD) by the average
auto PSD [31]. The resulting model Ĝ(k) and a first-order
approximation of its standard deviation are shown in Fig. 7. This
shows that for frequencies > 3 kHz, the uncertainty is relatively
large. Furthermore, Ĝ−1(k) is readily obtained for each k with
exception of k = 0, since Ĝ(0) = 0 due to the integrator in
the feedback controller. To satisfy the condition in Theorem 1,
Ĝ−1(0) is set to zero.

To illustrate that high performance can be achieved with low
requirements on prior modeling, Design Guideline 1 is used,
since it does not require an uncertainty model. As described in
step 1, Q(k) = 1∀k, and α(k) is set to αc = 0.6∀k to allow con-
vergence over a large frequency range. After a first exploratory
experiment, it turns out that convergence is achieved up to
3700 Hz, with exception of a small set of frequencies, including
ω∗k = 3050 Hz. At these nonconvergent frequencies, α(k) is set
to 0, as shown in Fig. 8. Conversely, in the lower frequency
range, α(k) can potentially be increased toward 1 at certain
frequencies, which typically increases the convergence speed.
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Fig. 8. Learning coefficient α(k) . The point indicates the learning
coefficient at ω∗k = 3050 Hz, which is zero.

Fig. 9. Impulse response of the learning model, i.e.,F−1
N {α(k)Ĝ−1(k)}

, shows significant noncausal behavior indicating NMP dynamics.

Fig. 10. (Top) Reference , the initial output y0(t) , and the
output after 30 FT-IIC iterations y30(t) . (Bottom) Similar plot of the
tracking error, which shows that converged error is about a factor 100
smaller.

This requires subsequent exploratory experiments to empirically
check for convergence and is, therefore, not further pursued here.
To get a feel for the time-domain properties of the inverse model,
its periodic impulse response, F−1

N {α(k)Ĝ(k)}, is displayed in
Fig. 9. The response shows a significant noncausal contribution,
which in light of Remark 2 implies that the system is NMP.

Performing the next experiment with Q(k) = 1 and α(k), as
shown in Fig. 8, results in a significant performance improve-
ment, as shown in Fig. 10. These plots show the output and
tracking error during iterations i = 0 and i = 30. This reveals
that the peak error is reduced to less than 0.5% of the reference.
In Fig. 11, the root-mean-square (rms) error is shown as a
function of the iterations. This shows that after seven iterations
the rms has decreased nearly 3 orders in magnitude. During
these first iterations, ‖ei‖2 can be described by the exponential
0.4i‖e0‖2, which shows that the convergence rate of ‖ei‖2 is
approximately κ−1 ≈ 1− αc = 0.4. Furthermore, the rms error
converges to a level which is very close to the mean rms of the
nonrepeating components of the error, which is estimated by
averaging 30 identical experiments. In Fig. 12, the PSDs of e0

and e30 are shown. The PSD of e0(t) reveals contributions at
50 + 100 · n Hz and at 100 · n Hz, where the latter are induced

Fig. 11. rms tracking error as a function of the iterations shows
significant performance improvement. For the first seven iterations, its
behavior is proportional to the exponential 0.4i , and the asymptotic
value is lower bounded by the mean rms of the nonrepeating components
of the error .

Fig. 12. PSD of e0(t) and e30(t) . The point indicates the
contribution at ω∗k = 3050 Hz.

Fig. 13. PSD of the tracking error at ω∗k = 3050 Hz during the tuning
procedure, where Q = 1 and α = 0.05 , α = −0.01 , and α = −0.05

and where Q = 0.5 and α = −1 . This shows that by taking
Q(ω∗k ) < 1, the convergence speed can be increased, even when the
model Ĝ is artificially made to be inaccurate by choosing α(ω∗k ) large.
Each line represents the average of 40 experiments.

by nonlinearities, since these do not appear in R(k). The PSD
of e30(t) confirms that disturbance rejection is achieved for all
frequencies at which α(k) �= 0. Notably, the largest component
occurs at ω∗k = 3050 Hz, since α(k∗) = 0.

This frequency is specifically treated by executing steps 1 and
2 of Design Guideline 1. The result is shown in Fig. 13, where
each line represents the average of 40 experiments.

1) By taking α(k∗) = 0.05, the PSD of the error diverges.
2) To achieve convergence, α(k∗) is reduced, and the sign of

α(k∗)Ĝ(k∗) is changed by taking α(k∗) = −0.01. This
results in slow convergence.

3) The convergence speed in increased by increasing α(k∗).
It turns out that α(k∗) = −0.05 yields the best result for
Q = 1. The convergence is relatively slow.

Since α(k∗) is relatively small, step 3 can be performed to
increase the convergence speed by taking Q(k∗) < 1. Moreover,
since convergence is only achievable for−0.05 < α < 0, a large
perturbation Δ(k∗) can be simulated by taking α(k∗) = −1.
By taking Q(k∗) = 0.5, convergence is nevertheless achieved
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Fig. 14. (Top left) rms error of data-driven FT-IIC shows perfor-
mance improvement, and irregular behavior at i = 4 . (Top right)
Data-driven FT-IIC error is larger than the FRF-based FT-IIC error ( )
at i = 10.

Fig. 15. PSD of e0(t) and e30(t) for data-driven FI-IIC.

and at a higher rate, as is clear from Fig. 13. This shows
that by incorporating the robustness coefficient Q, superior
performance is achieved with respect to pre-existing IIC [19].

D. Comparison to Data-Driven Learning

In this section, the FRF-based approach is compared to a data-
driven approach. The latter is obtained by setting Q(k) = 1 and
replacing Ĝ by Ĝi = (Ui(k) + Cf b(ejωk R(k)))Yi(k)−1, where
Ui and Yi result from iteration i [22]. To avoid learning transients
for small |Yi |, an exponentially decreasing learning gain is used,
i.e., α(k) = e−i/im a x ∀k. The resulting performance is shown
in Fig. 14. Clearly, the achieved performance is inferior, which
is mainly due to the fact that the data-driven approach cannot
reject the nonlinear disturbances that appear at those frequencies
where R(k) = 0, as is apparent by comparing Figs. 12 and 15.
Furthermore, the convergence behavior, as shown in Fig. 14,
displays a learning transient at i = 4 despite the exponentially
decreasing α(k). This indicates that more rigorous measures are
required to ensure transient-free convergence, as is a subject of
ongoing research [33].

In summary, the FT-IIC method is applied to a nanoposi-
tioner, which shows that broadband disturbance rejection can be
achieved by using nonparametric FRF models. By following the
proposed design guidelines, rapid convergence and robustness
against plant uncertainties is achieved.

VII. CONCLUSION

In this paper, the FT-IIC method is developed, which it-
eratively improves the tracking performance of a stable LTI
process by using a nonparametric FRF estimate. It is shown that
under mild conditions, FRF-based inversion results in bounded
inputs, even if the system possesses right-half-plane zeros. In
contrast to pre-existing IIC approaches, the developed approach
allows for robustness against plant variations. This is facilitated
by the derivation of design guidelines based on steady-state

performance, monotonic convergence, and robustness. Further-
more, a finite-time analysis of the batch-to-batch and continuous
implementations reveals that the effect of transients can readily
be mitigated by waiting. The potential of the proposed approach
is confirmed in experiments by application to a nanopositioner.

APPENDIX A
PROOF OF LEMMA 1

Proof: Since R(ω) exists and since G−1(ejω )R(ω) is
bounded on (−π, π], U(ω) = [G(ejω )]−1F∞{r} is integrable
on (−π, π], and hence, (4) exists and u ∈ l∞. Further-
more, since F∞{x(k + 1)} = ejωF∞{x(k)} [28, Sec. 2.2],
the DTFT of (1a) equals ejω X(ω) = AX(ω) + BU(ω),
and since G has no poles on the unit disc, X(ω) =
(ejω I −A)−1BU(ω) is unique and bounded for any
U(ω). Next, consider the DTFT of (1b) Y (ω) = CX(ω) +
DU(ω) = (C[ejω I −A]−1B + D)U(ω), and hence, Y (ω) =
G(ejω )U(ω) = G(ejω )[G(ejω )]−1R(ω), which shows that (1)
holds, and y(k) = r(k) ∀k ∈ Z. �

APPENDIX B
PROOF OF LEMMA 2

Proof: Combining (6) with Ei = R− Yi and using Ĝ(k) to
model G(ejωk ) leads to Êi+1 = Êi − Ĝ(Ui+1 − Ui). Substi-
tuting this into the optimality condition ∂J

∂Ui + 1
= 0 results in (3)

with Q(k) and α(k) given by (7). �

APPENDIX C
PROOF OF LEMMA 3

Proof: The true error is given by Ei+1 = Rv −GUi+1.
Substituting the optimal FT-IIC update law (3) into

this relation gives Ei+1 = Rv −QG
(
Ui + αĜ−1Ei

)
= Rv −

QGUi −QαGĜ−1Ei . Rewriting Ei gives GUi = Rv − Ei .
Substitution of the latter in Ei+1 leads to Ei+1 = (1−Q)Rv +
Q

(
1− αGĜ−1

)
Ei , which at the fixed point Ei+1 = Ei � E∞

results in (8). �

APPENDIX D
PROOF OF LEMMA 4

Proof: Define γ �
(

1− αĜ−1G
)

and substitute (8) and

Ei+1, as in the proof of Lemma 3, in |Ei+1 − E∞| to yield

|Ei+1 − E∞| =
∣
∣
∣(1−Q)Rv + QγEi − (1−Q)

1−Qγ Rv

∣
∣
∣

=
∣
∣
∣Qγ

(
Ei − (1−Q)

1−Qγ Rv

)∣
∣
∣ = κ |Ei − E∞| .

Recalling Definition 1 completes the proof. �

APPENDIX E
PROOF OF LEMMA 5

Proof: For τ < 1, ϕ ∈ C>0 and R{ϕ} < 2, which implies
that (11) is satisfied for all α ∈ (0, 1]. For τ ≥ 1, ϕ ∈ C, i.e.,
the phase of ϕ is not restricted and consequently � α such that
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(11) is satisfied. For α = 1, (11) results in

κ(k) = |Q(k)Ĝ−1(k)Δ(k)| ≤
∣
∣
∣
∣Q(k)

1
τ(k)

∣
∣
∣
∣ .

Hence, (11) is satisfied ∀Δ ∈Δ if (12) holds. �

APPENDIX F
PROOF OF LEMMA 6

Proof: Restrict the input to be periodic, i.e., ūi = ū, and
assume that the system is in the steady state, i.e., x(N(n +
1)) = x(Nn). Substituting this identity into (13a) combined
with (13b) and x(t0) = x0 yields ēi = r̄ − Jpūi , where the
periodic response matrix Jp is given by (15). Employing the
matrix push-through identity shows that Jp is circulant. Since
Gm is a diagonal matrix, T � FH GmF is also a circulant
matrix by property of F [35, Sec. 4.8.2]. Hence, it suffices
to compare a single row of Jp and T . Using μ(N−k)i =
μ̄ki and 1

N

∑N−1
k=0 ejωk h(ejωk −A)−1 = (I −AN )−1AN−h−1,

which is validated by direct computation, shows that Jp = T =
FH GmF . �

APPENDIX G
PROOF OF THEOREM 2

Batch-to-batch: Consider ēi , which results from the output
after waiting for w periods, as is given by (17), i.e.,

ēi = r̄ − ȳ
〈w 〉
i = r̄ −HFw x(0)− Jtūi .

Substitution into (16) yields

ūi+1 = Qūi +QΛĴ−1
p (r̄ −HFw x(0)− Jtūi)

= Zūi +QΛĴ−1
p (r̄ −HFw x(0)). (21)

This first-order linear recursion is stable iff ρ̄(Z) < 1. In addi-
tion, setting ūi+1 = ūi = ū∞ in (21) results in the fixed point
u∞ = (I − Z)−1ΛĴ−1

p (r̄ −HFw x(0)), and it follows readily
that ‖ūi+1 − u∞‖2 = ‖Z‖2‖ūi − u∞‖2. Recalling Definition 1,
ūi converges monotonically in ‖.‖2 if ‖Z‖2 = σ̄(Z) < 1. In
case Ĝ(k) = G(ejωk ), and if α(k) = 1 ∀k, then it holds that
Λ = I and Ĵp = Jp . Consequently, Z = Q(I − J−1

p Jt). Con-

sider Jt , given by (18), Jt = H
∑w−1

j=0 FjM + J, which can be
written as Jt = H

∑∞
j=0 FjM + J −H

∑∞
j=w F jM , which

is identical to Jt = H
∑∞

j=0 FjM + J −HFw
∑∞

j=0 FjM .
Next, use that

∑∞
j=0 Fj = (I − F )−1, which holds if ρ̄(F ) < 1

[35, Sec. 11.5.6], which holds since F = AN where ρ̄(A) <
1. Hence, Jt = Jp −HF−w (I − F )−1M , where Jp is given
by (14). Consequently, Z = Q(I − J−1

p (Jp −HF−w (I −
F )−1M)), which is identical to (20), thereby completing the
proof. �

Continuous: Consider ēi that results after waiting for w
periods since the previous input update, as is given by (17),
i.e., ēi = r̄ − ȳ〈n+w 〉 = r̄ −HFw x(Nn)− Jtū

〈n〉. Next, let
ū〈w+n〉 be given by ūi+1 as given by (16), i.e.,

ū〈w+n〉 = Qū〈n〉 +QΛĴ−1
p (r̄ −HFw x(Nn)− Jtū

〈n〉)

= Zū〈n〉 +QΛĴ−1
p (r̄ −HFw x(Nn)).

In addition, x(N(n + w)) follows by recursion of (13a)

x(N(n + w)) = Fw x(Nn) +
w−1∑

j=0

FjMū〈n〉.

Hence, a realization of the lifted closed-loop dynamics is

ξ(n + w) = Aξ(n) +

[
0

QΛĴ−1
p

]

r̄, ξ(n) =

[
x(Nn)

ū〈n〉

]

where A is given by (19). The closed dynamics are stable iff
ρ̄(A) < 1, which concludes the proof. �
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