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Abstract— The first resonance mode of mechanical systems
is a significant limit to the achievable positioning bandwidth.
This resonance is dependent on the physical, material and
geometric properties of the system. Significant effort is typically
required to increase the resonance frequency by increasing
stiffness or reducing mass. In this article, a modified IRC
scheme is presented that effectively shifts the first resonance
mode to a higher frequency, thereby enabling a substantially
higher positioning bandwidth. A 70% increase in positioning
bandwidth is demonstrated.

I. INTRODUCTION

Integral Resonant Control (IRC) was first proposed, a
decade ago, as a simple, low-order well-performing damping
control scheme for co-located systems, [1]. The advantages
of the IRC scheme include the ability to damp multi-
ple resonant modes, guaranteed stability and robustness to
variations in resonance frequency which are common in
light-weight positioning systems [2]–[6]. These desirable
qualities have made the IRC scheme a popular choice for
resonance damping applications. As a result, it has been
successfully applied to damp the problematic resonances in
a plethora of technological systems such as cantilever beams
[1], flexible robotic manipulators [7], piezoelectric-stack ac-
tuated nanopositioners [8], piezoelectric tube nanopositioners
[9], piezoelectric microgrippers [10], lightweight pedestrian
structures [11], floor structures [12], nonlinear oscillatory
systems [13], MEMS nanopositioners [14] etc. In a number
of these applications, the IRC scheme is used as the damp-
ing controller in tandem with a suitably designed tracking
controller to effectively deliver superior positioning perfor-
mance.

It is well-known that most micro- and nanopositioning sys-
tems exhibit a lightly damped resonant mode at a relatively
low frequency. Moreover, this resonant mode stringently
restricts the achievable closed-loop positioning bandwidth of
the positioning system, [15], [16]. To increase the achievable
positioning bandwidth, several geometries and structural
design modifications have been proposed that place this
limiting first resonant mode at higher frequencies, [8], [17],
[18]. Unfortunately, this increase in bandwidth by means
of a higher first resonance frequency comes at the cost of
a reduction in displacement ranges. It is therefore deemed
extremely beneficial if the achievable positioning bandwidth
could be increased without any mechanical / design changes;
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thereby keeping the displacement range unchanged. A way
to achieve this using standard control techniques has hitherto
not been reported.

In this work, the first successful implementation of a
control scheme that effectively increases the positioning
bandwidth of a nanopositioning system by seemingly shifting
the dominant first resonant mode to a higher frequency,
is reported. A proportional gain controller is implemented
in tandem with the appropriate IRC scheme to result in
a closed-loop damped system that has its first resonance
shifted to a higher frequency than it’s open-loop counterpart.
This technique can be easily integrated into any co-located
positioning system to deliver a significantly wider positioning
bandwidth. As a result, the proposed scheme has the potential
to significantly increase achievable scan speeds in Atomic
Force Microscopes.

A. Overview

In section II, a second-order model (for the dominant first
resonant mode) is identified to match the measured frequency
response of one axis of the nanopositioning platform. A brief
introduction for the IRC design is also included. Section
III presents the rationale, the detailed design and closed-
loop performance analysis of the proposed resonance-shifting
method. Section IV presents the modifications necessary to
implement the resonance-shifting IRC scheme in practice;
experimental results are also presented. The paper concludes
in Section V.

II. SYSTEM MODELING

The frequency response of a single axis nanopositioner
measured from the voltage applied to the piezo-stack, to the
resultant displacement of the platform, can be represented as
an infinite sum of second-order resonant sections shown in
Eq. 1.

G(s) =

M
∑

i=1

σ2

i

s2 + 2ζiωis+ ω2

i

(1)

where M → ∞, σ2

i corresponds to the gain of each mode of
vibration, ζi is the damping ratio of each mode, and ωi is is
the natural frequency of vibration of each mode. However,
for practical purposes Eq. (1) is usually truncated to a
contain finite number modes that lie within the bandwidth
of interest. For typical nanopositioners, the first resonant
mode is usually very lightly damped and dominates the
entire frequency response of the axis. Consequently, in most
related works, the axis model is truncated to include only the
first dominant resonant mode [17], [19], [20]. This dominant
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Fig. 1. Measured FRF vs the identified second-order model’s frequency
response

lightly damped resonance mode can be modeled as a second
order system with a small and positive feed-through term d
, added to compensate for the truncation-induced modeling
error, [21]. Thus, the useable model of one axis of a typical
nanopositioner takes the form:

G(s) =
σ2

s2 + 2ζωps+ ω2
p

+ d, (2)

where ζ is the damping coefficient and ωp is the resonance
frequency. The frequency-response of the nanopositioning
platform was measured from input voltage supplied to the
piezo-actuator to output voltage proportional to the displace-
ment measured by the capacitive displacement sensor. A
subspace-based identification technique as reported in [22],
was employed to generate a second-order model shown in
Eq. 3

ˆG(s) =
8.3782× 106

s2 + 57.2s+ 6.657× 106
. (3)

The measured frequency response data as well as the
identified second-order model’s frequency response is plotted
in Fig. 1. As seen, the identified model matches the measured
data with good accuracy. The first resonant mode at 411
Hz is lightly damped and dominates the dynamics withing
the bandwidth of interest. As an artifact of the mechanical
construction of the platform axis, a second resonant mode,
much smaller than the dominant first mode can be seen at 576
Hz. Though this mode is within the bandwidth of interest,
simulation results show that neglecting it from the system
model and subsequent control design and analysis does not
have any unwanted effects.

In the next section, this identified model is used to derive
the controller parameters as well as to validate the designed
control scheme via simulations.

III. CONTROLLER DESIGN

The three step controller design process is described as
follows:

Step1: Resonance shifting -

The achievable positioning bandwidth of a nanopositioner
is limited by the resonance frequency of its axis. The
resonance-shifting controller is introduced to overcome this
constraint. This controller is basically a negative proportional
feedback loop, see Fig. 2.

The proportional gain loop not only increases the res-
onance frequency but also increases the maximum peak
value (by reducing the damping coefficient ζ). This negative
feedback loop is always stable for a second order system and
by increasing the gain k̂ the DC gain of the loop approaches
unity. This is shown below where H1 is the transfer function
for the resonance-shifted closed-loop system:

Ĝ =
σ2

s2 + 2ζωps+ ω2
p

H1 =
k̂G

1 + k̂G

H1 =
k̂σ2

s2 + 2ζωps+ ω2
p + k̂σ2

(4)

Henceforth, the system subjected to damping and tracking
controller is given by:

H1(s) =
σ̄2

s2 + 2ζ̄ω̄ps+ ω̄2
p

where σ̄2 = k̂σ2 and ω̄2

p = ω2

p + k̂σ2.

By comparing the platform transfer function and H1, rela-
tionships between ζ̄ and other parameters can be identified:

2ζ̄ω̄p = 2ζωp

⇒
ζ̄

ζ
=

ωp

ω̄p
(5)

(5) shows that increasing resonance frequency by a factor of
α will reduce the damping ratio by 1/α. In most closed-loop
second-order system analysis, the damping ratio is usually
neglected for sake of simplicity. The same simplification
will be applied to all the analysis presented in the work that
follows. As we have further reduced the damping coefficient,
this simplification is more valid. The DC gain of H1 is
k̂σ2/(ω2

p + k̂σ2). Since for most of the systems σ2 and ω2

p

are almost equal, the DC gain can be estimated as:

DCgain ≈
k̂ω2

p

(k̂ + 1)ω2
p

≈ 1 = 0dB

1) Relation between sensor bandwidth and k̂: Sensor
bandwidth is one of the limiting factors for the amount
of resonance shift. The shifted resonance should be within
the sensor bandwidth γ. Considering shifted resonance fre-
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Fig. 2. (a) Block diagram for the Resonance-shifting controller, IRC damping controller and Integral tracking controller scheme where d is the feed-through
term, k̂ is the resonance shifting gain, k is the IRC damping gain and kt is the integral tracking gain.

quency be (ω2

p + k̂σ2)1/2, then:

(ω2

p + k̂σ2)1/2 < γ

k̂ <
γ2 − ω2

p

σ2
(6)

Step 2: Damping Controller - The general concept of the
IRC design can summarized below:

Given that a colocated system G(s) with pole-zero inter-
lacing is to be damped, an adequate feed-through term ‘d’
can first be added to the system to reverse the interlacing
from pole-zero to zero-pole. Furthermore, if a simple inte-
grator C(s) = k

s is implemented in positive feedback with
such a modified system Ĝ(s) = G(s)+d, as the integral gain
‘k’ is increased, the poles of the system traverse a curve
where first they move away from the imaginary axis, into
the left-half complex plane (thus increasing their damping
coefficient) and then back towards the imaginary axis till
they reach their correspondingly paired zero (with reduced
damping).

2) Relationship between feed-through, damping and IRC
gain: In [23], a full mathematical derivation of the relation-
ship between feed-through, damping and IRC gain can be
summarized by the following theorem.

Theorem 1: Consider a colocated system with a pair of
complex poles at ±jωp and feed-through induced zeros at
jωz > jωp/3. If the IRC strategy is implemented, the
maximum damping achievable is given by

ζmax =
1

2





ωp
√

ω2
p + σ2/d

− 1



 . (7)

The controller gain required to reach this maximum damping
is given by

k =
1

|d|






ωp

√

√

√

√

ωp
√

ω2
p + σ2/d






, (8)

where ωz =
√

ω2
p + σ2/d with respect to d.

Step 3: Tracking controller - The IRC algorithm has
been applied to damp the resonances of various precision
positioning systems, especially nanopositioners [7], [8], [11],

[19], [24]. Nanopositioning systems generally employ piezo-
electric actuators that tend to introduce nonlinear effects such
as hysteresis and creep. To minimize the positioning errors
introduced by these phenomena, a damping controller such
as IRC is used in conjunction with a simple integral tracking
scheme [15], [25]. A block diagram of the complete control
scheme incorporating both IRC damping and integral track-
ing along with the resonance-shifting controller is shown in
Fig. (2).

In Fig. (2), the transfer functions of interest for quantifica-
tion of positioning performance are y/r (output to input) and
y/di (output to input disturbance). To find the characteristic
equation C(s), four loops L1, L2, L3 and L4 are defined as
below:

L1 = −k̂ ×G(s)

L2 =
k

s
× k̂ ×G(s)

L3 =
k

s
× d

L4 = −
kt
s

×
k

s
× k̂ ×G(s).

Using Mason’s rule, C(s) is the numerator of (9).

1− (L1 + L2 + L3 + L4) + (L1L3) (9)

Roots of the denominator of (9) are zeros of different
transfer functions or they may cancel out. But the zeros of
(9) are the poles of the final closed-loop transfer function.
Stability of the closed-loop transfer function is the most
important factor in any control application. H1 as defined
before, can be considered as the new system which needs
to be damped and tracked. Hence, the relationship between
damping and tracking controller can be defined by Theorem
2, [23].

Theorem 2: Let k and kt be the IRC damping and integral
tracking gains respectively. Then, for the closed-loop system
as implemented in Fig. (2) to be stable, the gains must obey
the following inequality:

ktk < −
σ̄2 + dω̄2

p

d2
(10)

This theorem proves that damping and tracking gains are
related in the IRC scheme and cannot be arbitrarily tuned
independent of each other.
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Fig. 3. The loop-gain and stability margins of the proportional feedback
loop when ks = 0.02.

Corollary 3: For a given second order system controlled
using the scheme shown in Fig. (2), there exists an absolute
maximum value for ktk. The corresponding maximum value
is related to d by:

d = −2
σ̄2

ω̄2
p

= 2dc (11)

max {ktk} =
ω̄4

p

4σ̄2
(12)

IV. EXPERIMENTS

Experimental validation is carried out by implementing
the developed control scheme on a nanopositioning platform.
Straightforward implementation leads to an unstable closed-
loop system. Practical implementation of this technique
needs a modified control structure. The following section
will first describe the issue and then present the modified
implementable control structure.

A. Modified implementation for practical application

The control block diagram illustrated in Figure 2 cannot
be implemented directly due to the wide bandwidth of
the proportional feedback loop. The unlimited bandwidth
can cause instability when dealing with unmodeled high
frequency modes. The practical stability margins is best
determined directly from the measured open-loop frequency
response. With this approach, the maximum stable gain of
the proportional feedback was found to be ks = 0.02 which
is only sufficient to achieve an 8 Hz increase in the resonance
frequency. The loop gain in Figure 3 shows a phase margin
of 8 degrees, which is of little practical value.

Although the proportional loop is not practical in isolation,
the characteristics are significantly more favorable when the
proportional and damping control loops are combined.

Cf (s) Ceq(s) G(s)

Fig. 4. Equivalent regulator form of the proportional and damping loops.

First, the complementary sensitivity function of the pro-
portional loop is

Gs(s) =
Gs(s)ks

1 +Gs(s)ks
. (13)

Similarly, the complementary sensitivity of the damping
control loop is

Gd(s) =
Gs(s)Cd(s)

1−Gs(s)Cd(s)
, (14)

where Cd(s) = kd/s. By substituting Gs(s), the transfer
function of the damping and proportional loop is

Gd(s) =
G(s)Cd(s)ks

1 +G(s)ks −G(s)Cd(s)ks
, (15)

Gd(s) =
G(s)Cd(s)ks

1 +G(s)ks (1− Cd(s))
. (16)

By removing the factor Cd(s)/ (1− Cd(s)) from the above
equation, the transfer function can be arranged in the form
of a regulator and prefilter. That is,

Gd(s) = Cf (s)
G(s)Ceq(s)

1 +G(s)Ceq(s)
, (17)

where the equivalent regulator is

Ceq(s) = ks (1− Cd(s)) (18)

and the prefilter is

Cf (s) =
Cd(s)

1− Cd(s)
, (19)

This arrangement is illustrated in Figure 4. Although there
are other possible implementations, this configuration is
desirable since the prefilter and regulator are both causal
and stable. In contrast, standard IRC requires an unstable
controller or the use of positive feedback. Furthermore, the
stability margins of the equivalent control loop are superior to
the isolated proportional loop, as described in the following
section.

B. Experimental Results

A proportional gain of ks = 1.5 was chosen the increase
the resonance frequency from 507 Hz to 1000 Hz. The
optimal damping parameters were then determined to be
kd = 6000 and d = −1.2. That is, the equivalent regulator
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Fig. 6. Experimental frequency response of the damping loop (in µm/V).
The resonance frequency of the open-loop system is 508 Hz while the 3 dB
bandwidth of the standard IRC and resonance shifted controllers is 565 Hz
and 1002 Hz.

is
Ceq(s) =

1.5s+ 1800

s+ 7200
, (20)

and the prefilter is

Cf (s) =
6000s+ 4.32× 107

s2 + 8400s+ 8.64× 106
. (21)

The loop-gain and stability margins of the equivalent
damping control loop are plotted in Figure 5. Even though
the proportional gain has been increased by two orders of
magnitude, the phase margin is significantly better than the
isolated proportional loop.

The frequency responses of the standard and resonance
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Fig. 7. Experimental frequency response of the complete servo loop (in
µm/V). The 3 dB bandwidth of the IRC control system is 225 Hz while
the resonance shifted controller is 711 Hz, 40% higher than the resonance
frequency.

shifted damping control loops are plotted in Figure 6. Both
controllers eliminate the resonance peak; however, the reso-
nance shifted controller achieves a bandwidth almost twice
that of the standard controller and nearly double the open-
loop resonance frequency.

The servo controller was tuned to minimize settling time
after a step command. The servo controllers for the standard
IRC C1(s) and resonance shifted systems C2(s) were found
to be

C1(s) =
650

s
+ 0.034, and C2(s) =

840

s
+ 0.034,

The closed-loop frequency responses of the servo loops
are compared in Figure 7. The resonance shifted controller
permits an increase in the tracking bandwidth from 225 Hz
to 711 Hz, which is 40% higher than the system resonance.
This is an outstanding achievement for a first-order damping
and tracking controller that does not require model based
inversion. These results are confirmed by the step response
in Figure 8.

Remarks: The resonance shifted controller was demon-
strated to effectively double the resonance frequency of the
nanopositioner whilst increasing the damping to near critical
level. Since the resonance frequency of a mechanical system
is proportional to

√

k/m, a comparable increase using me-
chanical methods would require a four times increase in the
stiffness, or a 75% reduction in the mass. Such mechanical
improvements may be difficult, undesirable, or impossible
to achieve. Therefore, the proposed technique provides an
alternate or complementary method to significantly improve
the performance without additional cost or mechanical re-
configuration.
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V. CONCLUSIONS

In this work, the IRC scheme is modified to include a
resonance shifting control loop that is capable of increasing
the positioning bandwidth of any colocated nanopositioner.
The modified scheme also possesses excellent input dis-
turbance rejection capability - a key performance criteria
for accurate positioning systems. Finally, the effectiveness
of the proposed scheme is demonstrated by simulating the
resonance-shifting IRC scheme on the model derived from an
FRF data set recorded for a commercially available nanopo-
sitioner. A twelve-fold increase in positioning bandwidth was
achieved. Future work will include experimental verification
and bandwidth-dictated parameter optimizations.
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