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Abstract— A fundamental component of the z-axis feedback
loop in amplitude modulation atomic force microscopy is the
demodulator. It dictates both bandwidth and noise in the am-
plitude and phase estimate of the cantilever deflection signal. In
this paper, we derive a linear time-invariant model of a closed-
loop demodulator with user definable tracking bandwidth and
sensitivity to other frequency components. A direct demodu-
lator design method is proposed based on the reformulation
of the Lyapunov filter as a modulated-demodulated controller
in closed loop with a unity plant. Simulation and experimental
results for a higher order Lyapunov filter as well as Butterworth
and Chebyshev type demodulators are presented.

I. INTRODUCTION

Since atomic force microscopy (AFM) was invented in the
late 1980s [1], the instrument has become a key enabling
technology for object and material property analysis at the
nanoscale [2]. Dynamic imaging modes and particularly
amplitude-modulation AFM are preferred for the investiga-
tion of delicate matter and biological samples due to the low
tip-sample forces [3]. This operating mode makes use of the
direct excitation of the cantilever at one of its resonance fre-
quencies and consequently requires a demodulator to obtain
amplitude and phase of the cantilever deflection signal.

As a component of the z-axis feedback loop, the tracking
bandwidth and sensitivity to other frequency components of
the demodulator are especially important in high-speed [4]
and multifrequency AFM [5] applications. As the tracking
bandwidth directly affects the achievable scan rate, it should
be maximized; however, this also increases the noise band-
width. On the other hand, in multifrequency AFM applica-
tions [6]–[8], the sensitivity to other frequency components
is of greatest concern.

A number of demodulation techniques can be found in
the existing literature, where only a few have found regular
use in commercial AFM systems [9]. For instance, RMS-
to-DC conversion has low implementation complexity but
is sensitive to other frequency components. In contrast, the
lock-in amplifier [10] is a narrowband technique that is
insensitive to other frequencies but has a limited bandwidth.
Due to the simplicity and tunable performance, this method
has become the standard in commercial AFM systems.

For high-speed AFM applications such as for the study
of fast biological processes [11], fast single wave detectors
like the peak hold method [12], coherent demodulator [13],
time-varying Kalman filter [14] and Lyapunov filter [15]
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have been developed. The two latter methods are closed-
loop demodulators based on a linear parametric model of the
cantilever deflection signal and can be extended to estimate
multiple frequencies for multifrequency AFM [16], [17].
While these system based filters achieve the highest track-
ing bandwidth without distortion, their first order response
provides limited rejection of broadband noise and other
frequency components near the carrier frequency [9].

This paper presents a linear time invariant (LTI) model
of the time-varying Lyapunov filter which enables the direct
design of a closed loop demodulator with arbitrary transfer
function. A higher order Lyapunov filter, Butterworth and
Chebyshev type 1 demodulator are presented in simulation
and experiment which achieve a significant improvement in
sensitivity to other frequency components which is a critical
performance criteria in multifrequency AFM.

II. LINEAR TIME-VARYING DEMODULATOR MODEL

A. Sinusoidal Model

Consider a sine wave with carrier frequency fc, time-
varying amplitude A(t), and phase φ(t) of the form

u(t) = A(t) sin
(
ωct+ φ(t)

)
. (1)

The model can be linearly parametrized by applying trigono-
metric identities, so that the state vector x =

[
x1 x2

]T
represents the quadrature and in-phase components (time-
dependencies are dropped for ease of readability).

u(t) =
[
cos (ωct) sin (ωct)

] [
A sin (φ) A cos (φ)

]T
= c(t)x. (2)

Once the signal (1) is parametrized according to (2), the
amplitude and phase can be recovered by

A =
√
x21 + x22, φ = arctan

(
x1
x2

)
. (3)

B. Linear Time-varying Lyapunov Filter

The Lyapunov filter is a time-varying online adaptive
estimator based on the linear parametrization of the signal (1)
with exponential convergence properties [18]. The estimator
can be written in the compact form [15]

ẋ = γc(t)TW (s)(u− y)
y = c(t)x (4)

where W (s) is a LTI transfer function, γ is the gain
parameter for tuning the bandwidth and y is the estimate of
the input signal u. If W (s) is chosen to be strictly positive
real, a Lyapunov stability proof can be used to show the
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Fig. 1. (a) Simulated amplitude tracking frequency response and (b)
simulated off-mode rejection of (4) for increasing γ values.

boundedness of the estimation error [18]. If W (s) = 1, the
Lyapunov filter achieves maximum tracking bandwidth [15]
but is sensitive to other frequencies due to its equivalent first
order response [9]. Amplitude and phase are recovered by
employing the output equations (3).

C. Simulation: Tracking Bandwidth

The tracking bandwidth is evaluated by simulating the
system (4) with an input signal (1) with modulated amplitude
A(t) = 1 + sin(2πfm(t)t) where fm(t) is the modulation
frequency which is swept for varying γ-values. The obtained
frequency responses are shown in Fig. 1(a). Since the modu-
lation frequency is varied, the output of the estimator is also
modulated at fm and the amplitude value is extracted using a
numerical lock-in amplifier. The simulation uses a modeled
carrier frequency of fc = 50 kHz and sampling frequency
fs = 1MHz. The maximum achievable tracking bandwidth,
measured as the −3 dB point is approximately fc.

D. Simulation: Sensitivity to other Frequencies

The sensitivity to other frequencies, termed off-mode
rejection, is evaluated by simulating the system (4) with an
input signal (1) where A = 1 and fc(t) is swept for varying
γ-values. The obtained frequency responses are shown in Fig.
1(b). Since a fixed carrier frequency is modeled in (4), the
output of the estimator is at DC. This value is extracted by
calculating the value of the FFT of the amplitude estimate at
zero frequency using a second-order Goertzel algorithm [19].
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Fig. 2. Frequency response and pole-zero map of (9) from u −→ y for
increasing γ values as indicated by the arrows.

The difference between the magnitude at unmodeled and at
the modeled frequency (0 dB) is defined off-mode rejection
which indicates the amount of suppression of unmodeled
frequency components.

III. LINEAR TIME-INVARIANT DEMODULATOR MODEL

A. Linear Time-invariant Lyapunov Filter

Assuming W (s) = 1, (4) can be rewritten as

ẋ = M(t)x+ γcT (t)u

y = c(t)x (5)

with

M(t) =

[
−γ cos θ2 −γ sin θ cos θ
−γ sin θ cos θ −γ sin θ2

]
(6)

where θ = ωct and M(t) is the time-varying system matrix.
A LTI formulation can be obtained by applying a coordinate
transformation with a time-varying transformation matrix
T(t) [14] such that

x̃ = T(t)x⇐⇒ x = T−1(t)x̃ (7)

where

T(t) =

[
cos θ sin θ
−ω sin θ −ω cos θ

]
. (8)

The LTI system can be obtained by calculating

˙̃x = Ṫ(t)x+T(t) =

[
−γ 1
−ω2

c 0

]
x̃+

[
γ
0

]
u

y = c(t)T−1(t)x̃ =
[
1 0

]
x̃. (9)

The transfer function from u −→ y of the system is a
resonant bandpass filter of the form

G̃(s) =
γs

s2 + γs+ ω2
c

. (10)

The pole-zero map and Bode plot of (9) from u −→ y for
varying γ values is shown in Fig. 2. It can be seen that the
system has a zero at the origin and a complex conjugate
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Fig. 3. Block diagram of the general closed-loop demodulator structure.

pole pair. As γ is increased, the poles move along a circle
with radius ωc further into the left half plane, representing
a faster system with increased damping; critical damping is
achieved at γ = 2ωc. The frequency responses roll off on
either side of the modeled carrier frequency due to the zero
at the origin and relative degree of 1. The Bode plot shows
the system response (u −→ y) in contrast to the simulated
off-mode rejection u −→ A shown in Fig. 1(b).

B. General LTI Demodulator Model

In order to obtain an arbitrary demodulator response,
consider the generalized block diagram and signal definitions
in Fig. 3, where the integrator of the Lyapunov filter is
replaced by the transfer function F (s). In this form, the
general demodulator resembles a modulated-demodulated
control loop [20] with a pre-filter W (s) and a unity plant.

The Laplace transform of the input signal v(t) mixed with
in-phase and quadrature sinusoids is

Vi(s) = L
{
v(t) sin (ωt)

}
=

1

2j
[V (s− jω)− V (s+ jω)]

Vq(s) = L
{
v(t) cos (ωt)

}
=

1

2
[V (s− jω) + V (s+ jω)].

(11)

Similarly, the in-phase and quadrature outputs after mixing
are

Yi(s) = L
{
sin (ωt)yiF (t)

}
= −1

2

[
F (s− jω) [V (s− 2jω)− V (s)]−

F (s+ jω) [V (s)− V (s+ 2jω)]
]

(12)

and
Yq(s) = L

{
cos (ωt)yqF (t)

}
=

1

2

[
F (s− jω) [V (s− 2jω) + V (s)] +

F (s+ jω) [V (s) + V (s+ 2jω)]
]
. (13)

By summing the two branches, the nonlinear products are
canceled out and the equivalent demodulator filter F̃ (s) can
be written as

F̃ (s) =
1

2

(
F (s− jω) + F (s+ jω)

)
(14)

and the overall input-output transfer function is

G̃(s) =
Y (s)

U(s)
=

W (s)F̃ (s)

1 +W (s)F̃ (s)
. (15)

-50

0

50

M
ag

ni
tu

de
 [

dB
]

-3

0

103 104 105 106

Frequency [kHz]

-200

0

200

Ph
as

e 
[d

eg
]

-5 0 5

Real Axis [s-1] 104

-4

-3

-2

-1

0

1

2

3

4

Im
ag

in
ar

y 
A

xi
s 

[s
-1

]

105

3

4

Fig. 4. Comparison of closed loop demodulator transfer functions:
Lyapunov filter G̃1(s), higher order Lyapunov filter G̃2(s), Butterworth
filter G̃3(s) and Chebyshev Type 1 filter G̃4(s).

Assuming W (s) = 1, the demodulator design problem is
to find F (s) from F̃ (s) given a desired closed loop transfer
function G̃(s). However, F̃ (s) must be representable by a
complex conjugate filter pair. A parametrization with real-
valued coefficients only exists for a limited number of G̃(s)
prototypes such as for the standard Lyapunov filter (10).
Rather than solving the desired closed-loop response for
F (s), an alternative is to fix F̃ (s) and use pole-placement
to find W (s) such that the desired closed-loop poles are
obtained.

IV. CLOSED-LOOP DEMODULATOR EXAMPLES

This section demonstrates how higher order closed-loop
demodulators can be derived using standard controller design
methods. The four different desired demodulator transfer
functions are: the Lyapunov filter G̃1(s), higher order Lya-
punov filter G̃2(s), Butterworth filter G̃3(s) and Chebyshev
Type 1 filter G̃4(s) and are shown in Fig. 4.

A. Higher Order Lyapunov Filter

In order to increase the off-mode rejection, the order of
the equivalent overall transfer function can be increased,
for example, by combining two standard Lyapunov filters
in series

G̃2(s) =
(γs)2

(s2 + γs+ ω2
c )

2
. (16)

The design problem is cast as a standard pole placement
controller design with one degree of freedom. Assuming
F2(s) = γ/s leads to

F̃2(s) =
γs

s2 + ω2
c

. (17)

Solving (15) for W (s) yields

W (s) =
G̃2(s)

(1− G̃2(s))F̃2(s)
=

γs

s2 + 2γs+ ω2
c

. (18)

The bode plot and pole-zero map of these transfer functions
for a fixed γ = 200k resulting in a tracking bandwidth of
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Fig. 5. Direct design of (a) second-order Butterworth demodulator and (b) Chebyshev type 1 demodulator with a tracking bandwidth of 10 kHz using
exact pole placement and an approximation using pole placement optimization.
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Fig. 6. Bode and pole zero plot of the higher order Lyapunov filter G̃2(s)
for a fixed γ = 200k resulting in a tracking bandwidth of 10 kHz.

10 kHz is shown in Fig. 6. The overall transfer function
G̃2(s) has a double zero at the origin and a double complex
conjugate pole pair at the frequency to be demodulated.
This results in a steeper roll-off on either side of the carrier
frequency, resulting in higher off-mode rejection. An increase
in tracking bandwidth is achieved by increasing γ in both
F (s) and W (s).

B. Butterworth and Chebyschev Filters

The desired closed-loop responses are Butterworth and
Chebyschev Type 1 bandpass filters with 40 dB/dec roll-off.
These filters have the form

Gd(s) =
Bd(s)

Ad(s)
=

b2s
2

s4 + a3s3 + a2s2 + a1s+ a0
(19)

where b2, ai are the filter coefficients which can be calculated
based on the order and the desired tracking bandwidth ωn

around the carrier frequency ωc ± ωn. Similar to the higher
order Lyapunov filter, these filters have a double zero at the
origin and two complex conjugate pole pairs. The locations
of the poles result in maximum flatness around the carrier
frequency for the Butterworth filter or define the allowable
passband ripple (here 3 dB) for the Chebyschev filter.

Having defined a desired closed loop polynomial with
the five coefficients, direct pole placement can be used to
calculate the filter coefficients of the prototype

W (s) =
p1s+ p0

l2s2 + l1s+ l0
. (20)

by solving the pole-assignment equation

Ad(s) = L(s)Ad(s) + P (s)Bd(s). (21)

The resulting closed loop demodulators G̃3,pp and G̃4,pp

with a tracking bandwidth of 10 kHz are shown in Fig. 5(a)
and (b) respectively. In both cases, it can be seen that the
poles are placed accurately, yielding a well-defined frequency
response around the carrier, however a non-minimum phase
zero is introduced which degrades off-mode rejection per-
formance at low frequencies. If this is unacceptable, then
the double zero at the origin can be forced into F̃ (s),
reducing the number of coefficients in W (s). Non-linear
pole-placement optimization can be used to place the poles
as close as possible to the desired poles, which degrades
performance around the carrier frequency but improves the
low-frequency off-mode rejection. The resulting closed loop
demodulators G̃3,opt and G̃4,opt are shown in Fig. 5. The
higher order Lyapunov filter can be regarded as a special
case of filters of the form (19) for which the complex poles
coincide leading to a double zero at the origin and well
defined response around the carrier frequency.
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Fig. 7. Experimental off-mode rejection u −→ Â and tracking bandwidth
frequency response of the standard and higher order Lyapunov filter.
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Fig. 8. Experimental off-mode frequency response of the standard
Lyapunov filter G̃1, higher order Lyapunov filter G̃2, Butterworth G̃3 and
Chebyshev Demodulator G̃4.

V. EXPERIMENTAL RESULTS

A. Frequency Responses

The closed-loop demodulators were implemented with a
fixed tracking bandwidth of 10 kHz on a Field Programmable
Gate Array (FPGA) (Xilinx Kintex-7 KC705 evaluation
board). The off-mode frequency responses from u −→ y
and the off-mode rejection u −→ Â were measured by
performing a frequency sweep on the carrier frequency
(Zurich instruments HF2LI). The tracking bandwidth is half
the width around the bandpass peak where the magnitude
drops below −3 dB.

The two Lyapunov filters corresponding to G̃1(s) and
G̃2(s) are directly compared in Fig. 7 for two bandwidth
settings of 100Hz and 25 kHz. For both the low and high
bandwidth setting, the off-mode rejection is improved due to
the steeper roll-off of the filter around the carrier frequency.

The off-mode frequency responses from u −→ y of all
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Fig. 9. Time-domain tracking experiment with (a) standard Lyapunov filter
G̃1, (b) higher order Lyapunov filter G̃2, (c) Butterworth G̃3,pp and (d)
Chebyshev Demodulator G̃4,pp. Color-coded according to Fig. 8.
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Fig. 10. Probability density function (PDF) fit to the histograms obtained
from the amplitude estimates shown in in Fig. 9 , color-coded accordingly.

implemented demodulators are plotted in Fig. 8. It can be
observed that the desired responses are obtained around the
carrier frequency. While the direct pole placement design for
the Butterworth G̃3,pp and Chebyshev Type 1 demodulator
G̃4,pp yields a well-defined response around the carrier
frequency, the non-minimum phase zero causes the responses
to flatten out for lower frequencies. This effect is mitigated
by employing pole placement optimization to obtain G̃3,opt

and G̃4,opt. As predicted by simulation, the Chebyshev Type
1 demodulator achieves the steepest roll-off and therefore the
highest off-mode rejection near the carrier frequency.

B. Time-domain Tracking

A time-domain experiment was conducted to investigate
the noise present within the amplitude estimates of the
demodulators and is shown in Fig. 9. The input signal to
the demodulators is a square-modulated sine-wave with a
second harmonic component and 2.2MHz bandwidth limited
additive white noise y = A1(t) sin (ωct)+A2(t) sin (2ωct)+
v where A1 = 500mVpp, v = 100mVpp and A2 =
50mVpp. The second harmonic component is a common
artifact during tapping-mode AFM imaging. To compare the
amount of noise in the amplitude estimate, a probability
density function (PDF) fit to the area normalized histograms
obtained from the amplitude estimate is shown in Fig. 10.

The results show that the lower order Lyapunov filter
passes more additive white noise and second harmonic
distortion into the amplitude estimate. At equal tracking
bandwidths, the higher order Lyapunov filter, Butterworth
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Fig. 11. (a) Topography image [nm], second harmonic magnitude image
[mV] using (b) the standard Lyapunov filter G̃1 and (d) the higher order
Lyapunov filter. (c) Magnitude histogram and PDF function fit of the higher
harmonic images.

filter and Chebyshev type 1 demodulator have less noise in
the amplitude estimate due to the higher off-mode rejection.
The Chebyshev type demodulator shows the characteristic
overshoot in the time-domain response.

C. AFM Higher Harmonic Imaging

In order to demonstrate the effect of increased demod-
ulator off-mode rejection, tapping-mode AFM imaging is
performed with additional imaging on the second higher har-
monic. The higher harmonic magnitude image is generated
with the standard Lyapunov filter and subsequently with the
higher order Lyapunov filter at an equal tracking bandwidth
of 10 kHz. The HS-20MG calibration standard was imaged
at 5.21Hz over an area of 10µm× 10µm.

The AFM images are shown in Fig. 11. In the higher
harmonic magnitude images, contrast is observed at the
edges of the features of the sample. It can be noticed
that the higher harmonic image generated by the higher
order Lyapunov filter in Fig. 11(d) shows qualitatively better
contrast than the standard Lyuapunov filter in Fig. 11(b).
This can be quantified by plotting the magnitude histogram in
Fig. 11(c) for which the higher order Lyapunov filter shows a
smaller standard deviation. This is due to the higher off-mode
rejection which reduces the noise in the amplitude estimate
of the second harmonic.

VI. CONCLUSION

In this work, LTI models are described for the off-mode
rejection and tracking bandwidth of a time-varying Lyapunov
filter. These models serve as a basis to directly design
demodulators with arbitrary closed-loop transfer functions.
This approach is demonstrated by designing demodulators

with arbitrary responses including a higher order bandpass
response, Butterworth response, and Chebyshev type 1 re-
sponse. The higher order responses provide improved off-
mode rejection, which was experimentally verified by time-
domain, frequency-domain and AFM experiments.
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