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Abstract— Laser scanning lithography is a maskless method
for exposing photoresist during semiconductor manufacturing.
In this method, the power of a focused beam is modulated while
scanning the photoresist. This article describes an iterative de-
convolution method for determining the exposure pattern. This
approach is computationally efficient as there is no gradient
calculation. Simulations demonstrate the accurate fabrication
of a feature with sub-wavelength geometry.

I. INTRODUCTION

Lithography is a key process in semiconductor manufac-
turing and accounts for approximately half of the production
costs [1]. To address the high cost of mask fabrication and
exposure infrastructure, methods for maskless lithography
are under development. A number of maskless lithography
processes such as scanning electron beam lithography and
ion beam lithography are already commercially available [2].

Scanning laser lithography is a cost-effective maskless
method which has the advantage of using standard pho-
toresist and process chemistry. In this method, a focused
laser is scanned over the photoresist while modulating the
beam power. Improvements in scanning methods [3], [4] and
positioning bandwidth [5]–[8] have significantly improved
the feasibility of this approach.

To increase the resolution of scanning laser lithography,
probe-based enhancement has been demonstrated to over-
come the diffraction limit [9], [10]. Feature sizes of 30-nm
have been reported using wavelengths in the visible spec-
trum of laser light [11]. The foremost difficulties associated
with this technique are the low throughput and complicated
exposure planning.

The problem of exposure planning is shared by all mask-
less lithography methods that involve a scanning beam. The
exposure plan defines the position and intensity of the laser,
electron, or ion beam. The objective is to find an exposure
plan that minimizes differences between the desired and
predicted feature. This class of problem is widely referred
to as inverse lithography [12]–[18]. Nonlinear programming
methods [13], [19], and gradient-based algorithms [12],
[18] have both applied to find exposure plans. However,
these methods are computationally intensive as they require
the first and second-derivative calculation for function with
millions or billions of variables.
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This article investigates the use of iterative deconvolution
for solving the inverse lithography problem. The iterative de-
convolution method was proposed in 1961 [20] for inverting
the response of physical sensors. This method has also been
applied to the inversion of other scattering and convolution
problems [20]–[23]. Iterative deconvolution is derivative-
free and therefore significantly less computationally intensive
than previously proposed methods [12], [13], [18], [19].

II. MODELING PROCESSES

In this section, the scanning laser lithography process is
modeled as a convolution operation followed by a non-linear
operator. The photoresist layer is assumed to be sufficiently
thin so that the beam profile remains constant throughout its
depth. The optical properties of the film, which are a function
of the exposure state, are also assumed to be constant. Other
optical effects such as scattering and cavity formation are
ignored.

A. Beam Profile

The light intensity (in W/m2) at the focal point of the
objective lens can be analytically expressed as [24]

B(x, y) =
2P

πw2
0

e
− 2(x2+y2)

w2
0 , (1)

where x and y represent the transverse axes of the beam at
focal point w0, and P is the power.

This normalized intensity is illustrated in Fig. 1, where the
focal point is located in the center of the workspace (Bφ).
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Fig. 1. The normalized intensity of a Gaussian beam, where the focal point
is located in the middle of the workspace. The beam width is w0 = 450 nm.
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Fig. 2. A simplified one-dimensional model of scanning laser lithography.
In this example, the exposure pattern E(x) is three discrete exposures of
equal energy. The resulting dosage D(x) is the sum of each exposure point
convolved with the beam profile B(x). Finally, the photoresist function
f(σ) maps the cumulative dosage D(x) to the predicted feature Ẑ(x).

B. Continuous Exposure Modeling

A one-dimensional model of the exposure process along
the x-axis (i.e. y = 0) is illustrated in Fig. 2. The exposure
profile E(x) represents the energy delivered at a position x.
In this work, the exposure energy is modulated by controlling
the time interval for which the laser shutter is open. Since the
beam power is constant, the time interval is proportional to
the resulting dosage. Other possibilities include modulating
the beam power or the scanning speed.

The light intensity (in W/m2) is a Gaussian function
described in 1. To calculate the dosage D(x) (in J/m2) at
a single point, the intensity is multiplied by the exposure
time, that is D(x) = tonB(x, 0). Where multiple exposures
ti are involved at arbitrary locations xi, the total dosage is

D(x) =

N∑
i=1

tiB(x− xi, 0). (2)

The above equation is a convolution operation which can
be generalized to discrete or continuous exposures in one or
more dimensions. That is, in general

D(x, y) = E(x, y)⊗B(x, y). (3)

where ⊗ is the convolution operator. When the exposure
function is discrete, the dosage can be expressed as

D(x, y) =

Nx∑
i=1

Ny∑
j=1

Ei,j B (x− xi, y − yj) , (4)
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Fig. 3. The sigmoid function representing the percentage of converted
photoresist versus cumulative dosage. The steepness parameter is varied
from alpha = 5 to 40

where the i, j element of the matrix E ∈ RNx×Ny represents
the exposure energy at a location x = xi and y = yj , where
x ∈ RNx and y ∈ RNy .

C. Photoresist Modeling

The photoresist model describes the fraction of chemical
conversion as a function of dosage. The simplest model is
a threshold function which indicates 100% conversion when
the pixel’s dose is above a threshold. For example,

Ẑ(x, y) =

{
1 D(x, y) ≥ T
0 D(x, y) < T

, (5)

where Ẑ is the predicted exposure result, and T is the
threshold.

In practice, the photoresist conversion is a continuous
function of dosage. The sigmoid function is an approxima-
tion of this process

Ẑ(x, y) = f(D(x, y)) =
1

1 + e−α(D(x,y)−D50%)
(6)

where the parameter α dictates the steepness of the sigmoid,
and D50% is the dosage where half of the photoresist is
converted. When α is large, the sigmoid approaches the
threshold model. Fig. 3 illustrates the behavior of the sigmoid
function with different values of α.

D. Discrete Exposure Modeling

To implement deconvolution, the functions for exposure,
beam profile and dosage are replaced by matrices that
represent these functions at discrete locations. The workspace
is an N × N square grid of points along the x and y axes
with a spatial resolution of ∆, that is

x = y = [ 0, ∆, 2∆, . . . , (N − 1)∆) ] , (7)

The exposure and dosage matrices are defined by E ∈
RN×N and D ∈ RN×N respectively. The peak light inten-
sity is normalized to one for simplicity. That is, the element
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Fig. 4. The dosage matrix resulting from a single exposure at (xk, yl).

Ek,l represents the exposure energy at location (xk,yl),
where Ek,l refers to the kth row and lth column. The dosage
D and predicted feature Ẑ and the desired Z have the same
structure.

The beam profile matrix Bk,l ∈ RN×N is the beam power
over the workspace for a focal point located at xk,yl and
Bk,l
i,j indicates the intensity at the location (xi,yj). Thus,

the array of beam profile matrices is

Bk,l
i,j =

2P

πw2
0

exp

(
−2 (xi − xk)

2
+ (yj − yl)2

w2
0

)
(8)

for i, j = 1, . . . , N, and, k, l = 1, . . . , N.

The dosage D represents the cumulative energy per unit
area, and is calculated by multiplying the exposure energy
at a point by the corresponding beam profile matrix, Bk,l.
The dosage D matrix is

D =

N∑
k=1

N∑
l=1

Ek,l B
k,l, (9)

where an individual element is

Di,j =

N∑
k=1

N∑
l=1

Ek,l B
k,l
i,j . (10)

Fig. 4 illustrates the matrix D, when E contains a single
non-zero entry at (xk,yl). The D matrix is obtained by
multiplying the matrix Bk,l by the scalar Ek,l.

For convenience, the matrices are vectorized by stacking
the rows. That is, the “vec” operator is

vec {E} ,


E:,1

E:,2

...
E:,N

 , (11)

where Matlab notation is used and E:,k refers to column k
of the matrix E. As a vector, the exposure matrix becomes

e , vec {E} . (12)

The dosage matrix can also be vectorized d , vec {D}
so that convolution operation can be replaced with the
multiplication. To do this, it is required to define an N ×N
array of N × N matrices Ω, where the columns of Ω are
the vectorized versions of Bk,l, that is

Ω =
[
vec
{
B1,1

}
, · · · , vec

{
BN,1

}
, vec

{
B1,2

}
, · · · ,

vec
{
BN,N

}]
. (13)

Equation (9) can be rewritten By Using this definition as

d = Ω e , (14)

where Ω ∈ RN2×N2

and d, e ∈ RN2

.
The vectorized predicted feature ẑ can be estimated by

applying the thresholding function (5) element wise to d.
Finally, the original form of the matrices E, D, and Ẑ

can be reconstructed by reshaping the vectors e, d, and ẑ
respectively.

III. ITERATIVE DECONVOLUTION

The aim of iterative deconvolution is to find a vector e
with non-negative entries that satisfies (14). This approach is
described in the following subsection with a one-dimensional
example.

A. One Dimensional Example

Consider the convolution of two vectors, y = h⊗x, where
the entries of x cannot be negative. This can be expressed
in matrix form,

y1
y2
...
yM

 =


h1 hM . . . h2

h2 h1 . . . h3

...
...

. . .
...

hM hM−1 . . . h1



x1

x2

...
xM

 , (15)

y = H x, (16)

where H is a circulant matrix derived from the vector h. A
direct solution to (16) is not possible due to singularities in
H [25], [26] and the non-negative constraint on x. Iterative
deconvolution is a method for solving ill conditioned inverse
problems. This method has been used in applications such
as spectroscopy [27] and image processing [28].

The algorithm proposed by Van Cittert in 1930 [29] is

x̂(n+1) = x̂(n) + µ(y −H x̂(n)), (17)

where x̂(n) is the nth iteration of the solution and µ is a
relaxation factor of convergence. To guarantee convergence,
it is required that 0 6 µi 6 2/λi, where λi is the eigenvalue
of H at the ith row. This inequality implies that the H
matrix should be positive definite [27]. As H is a symmetric
matrix, its eigenvalues are real; in turn, HTH becomes
a positive definite matrix because its eigenvalues are the
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eigenvalues of H , squared. Thus, Van Cittert linear iterative
algorithm expressed as

x̂(n+1) = x̂(n) + µ(HTy −HTH x̂(n)), (18)

A common method for choosing µ is to guaranteeing con-
vergence by using the maximum eigenvalue λmax; however,
this significantly reduces convergence speed.

In reference [26], the convergence speed was increased by
using a local variable relaxation factor, described by

µi =
x̂
(n)
i

(HTH)i x̂(n)
(19)

By inserting (19) into (18), an equation known as the Gold
deconvolution algorithm is obtained, that is

x̂(n+1) = x̂(n) � HTy

HTH x̂(n)
, (20)

x̂(n+1) = x̂(n) � y ⊗ h
h⊗ (x̂(n) ⊗ h)

, (21)

where � indicates the element wise multiplication.

B. Iterative Exposure Deconvolution
The Gold iterative deconvolution method in (21) can be

applied directly to find a non-negative exposure vector e
which satisfies (14). That is,

ê(n+1) = ê(n) � ΩTd

ΩTΩ ê(n)
, (22)

The above algorithm can also be rewritten when the
arguments are two dimensional matrices,

Ê(n+1) = Ê(n) � D ⊗Bφ

Bφ ⊗ (Ê(n) ⊗Bφ)︸ ︷︷ ︸
D̂

. (23)

where D̂ is the predicted dosage at each iteration and D is
the desired dosage resulting from the desired feature Z. D
can be found by solving (6) for D, that is

D = D50% −
[

1

α
� ln

(
1

Z
− 1

)]
. (24)

IV. SIMULATION RESULTS

In the simulation, the threshold energy is D50% = 0.5, and
the Gaussian beam has a width of 450 nm, as illustrated in
Fig. 1. The workspace is 10 µm × 10 µm with a resolution
of 100 nm, which results in a 100 × 100 matrix.

The desired feature is illustrated in the right column
of Fig. 5, where the values are either zero or 0.9, which
represents a zero or 90% photoresist conversion. The initial
exposure condition Ê0 is a scaled version of the desired
feature. As expected, the dosage produced by the initial
exposure pattern in Fig. 5(b) results in a gross over-exposure
in Fig. 5(c). However, after 50 and 10,000 iterations, the dif-
ference between the desired and predicted feature is reduced.
The evolution of the error versus iteration is plotted in Fig. 6.

For 10,000 iterations, the total calculation time is 30 sec-
onds, which is significantly faster than the gradient descent
method [12], which was 90seconds for the same problem
size.

V. CONCLUSION

This article describes the application of iterative decon-
volution to inverse lithography. Due to the computational
simplicity, this method is significantly faster and requires less
memory than competing methods. Therefore, the proposed
method is well suited to large inverse lithography problems.

Current research involves experimental application, and
the derivation of an optimal iteration step size and termi-
nation condition.

REFERENCES

[1] L. R. Harriott, “Limits of lithography,” Proceedings of the IEEE,
vol. 89, no. 3, pp. 366–374, Mar. 2001.

[2] M. Altissimo, “E-beam lithography for micro-nanofabrication,” Biomi-
crofluidics, vol. 4, no. 2, p. 026503, 2010.

[3] Y. R. Teo, Y. K. Yong, and A. J. Fleming, “A comparison of scanning
methods and the vertical control implications for scanning probe
microscopy,” Asian Journal of Control, vol. 19, no. 2, pp. 1–15, Mar.
2017.

[4] A. J. Fleming and A. G. Wills, “Optimal periodic trajectories for band-
limited systems,” IEEE Transactions on Control Systems Technology,
vol. 13, no. 3, pp. 552–562, May 2009.

[5] A. J. Fleming and Y. K. Yong, “An ultra-thin monolithic xy nanoposi-
tioning stage constructed from a single sheet of piezoelectric material,”
IEEE/ASME Transactions on Mechatronics, vol. 22, no. 6, pp. 2611–
2618, Dec. 2017.

[6] M. Ratnam, B. Bhikkaji, A. J. Fleming, and S. O. R. Moheimani,
“PPF control of a piezoelectric tube scanner,” in IEEE Conference
on Decision and Control and European Control Conference, Seville,
Spain, Dec. 2005.

[7] Y. R. Teo, A. A. Eielsen, J. T. Gravdahl, and A. J. Fleming, “A
simplified method for discrete-time repetitive control using model-
less fir filter inversion,” Journal of Dynamic Systems, Measurement
and Control, vol. 138, no. 8, pp. 1–13, Aug. 2016.

[8] A. A. Eielsen, Y. R. Teo, and A. J. Fleming, “Improving robustness
filter bandwidth in repetitive control by considering model mismatch,”
Asian Journal of Control, vol. 19, no. 4, pp. 1–11, Jul. 2017.

[9] M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromag-
netic Theory of Propagation, Interference and Diffraction of Light.
Cambridge University Press, 1999.

[10] B. S. Routley, J. L. Holdsworth, and A. J. Fleming, “Optimization of
near-field scanning optical lithography,” in SPIE Advanced Lithogra-
phy, San Jose, CA, 2015.

[11] Y. Lin, M. Hong, W. Wang, Y. Law, and T. Chong, “Sub-30nm
lithography with near-field scanning optical microscope combined with
femtosecond laser,” Applied Physics A, vol. 80, no. 3, pp. 461–465,
2005.

[12] O. T. Ghalehbeygi, G. Berriman, A. J. Fleming, and J. L. Holdsworth,
“Optimization and simulation of exposure pattern for scanning laser
lithography,” in IEEE Multiconference on Systems and Control, Syd-
ney, 2015.

[13] A. J. Fleming, A. G. Wills, O. T. Ghalehbeygi, B. S. Routley, and
B. Ninness, “A nonlinear programming approach to exposure optimiza-
tion in scanning laser lithography,” in American Control Conference,
Boston, MA, 2016.

[14] A. Poonawala and P. Milanfar, “Mask design for optical microlithog-
raphy - an inverse imaging problem,” Trans. Img. Proc., vol. 16, no. 3,
pp. 774–788, Mar. 2007.

[15] F. Liu and X. Shi, “An efficient mask optimization method based on
homotopy continuation technique,” in 2011 Design, Automation Test
in Europe, March 2011, pp. 1–6.

[16] L. Pang, G. Dai, T. Cecil, T. Dam, Y. Cui, P. Hu, D. Chen, K.-H. Baik,
and D. Peng, “Validation of inverse lithography technology (ilt) and its
adaptive sraf at advanced technology nodes,” pp. 69 240T–69 240T–12,
2008.

[17] Y. Granik, “Fast pixel-based mask optimization for inverse lithogra-
phy,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 5,
no. 4, pp. 043 002–043 002–13, 2006.

[18] O. T. Ghalehbeygi, A. G. Wills, B. S. Routley, and A. J. Flem-
ing, “Gradient-based optimization for efficient exposure planning in
maskless lithography,” Journal of Micro/Nanolithography, MEMS, and
MOEMS, vol. 16, pp. 16 – 16 – 9, 2017.

6687

Authorized licensed use limited to: University of Newcastle. Downloaded on February 23,2021 at 22:38:41 UTC from IEEE Xplore.  Restrictions apply. 



0 5 10
Y [um]

0

2

4

6

8

10

X 
[u

m
]

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0 5 10
Y [um]

0

2

4

6

8

10

X 
[u

m
]

0

0.05

0.1

0.15

0.2

0 5 10
Y [um]

0

2

4

6

8

10

X 
[u

m
]

0

0.5

1

0 5 10
Y [um]

0

2

4

6

8

10

X 
[u

m
]

5

10

15

20

25

0 5 10
Y [um]

0

2

4

6

8

10

X 
[u

m
]

0.5

1

1.5

0 5 10
Y [um]

0

2

4

6

8

10

X 
[u

m
]

0.5

1

1.5

0 5 10
Y [um]

0

2

4

6

8

10

X 
[u

m
]

0 5 10
Y [um]

0

2

4

6

8

10

X 
[u

m
]

0 5 10
Y [um]

0

2

4

6

8

10

X 
[u

m
]

Desired
Predicted

Desired
Predicted

Desired
Predicted

Exposure (E) Dosage (D) Desired and predicted feature

ite
ra

tio
n 

= 
1

ite
ra

tio
n 

= 
50

ite
ra

tio
n 

= 
10

00
0

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Fig. 5. The result of iterative deconvolution with with 1, 50, and 10000 iterations. The exposure, resulting dosage, and predicted feature are plotted in
the left, middle, and right column. The color intensity represents the exposure energy in the left column and energy density in the middle column.
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