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Abstract— This article proposes a novel technique for inde-
pendent measurement of strain and temperature in piezoresis-
tive strain sensors configured in a tee-rosette. The most notable
property of piezoresistive sensors is their easy integration
into MEMS fabrication processes and nanopositioning systems
which makes them highly advantageous for both size and
cost. The foremost disadvantage associated with piezoresistive
sensors is high temperature sensitivity. The proposed estimator
allows independent estimation of strain and temperature, which
eliminates drift due to temperature variation. Experimental
results are presented for motion sensing of a piezoelectric
stack actuator which shows a strain measurement with a mean
absolute error of 2.16% over a temperature range of -15◦C to
40◦C.

I. INTRODUCTION

The sensor requirements of a nanopositioning system are
among the most demanding of any control system [1]. Due
to their high sensitivity and low noise, piezoresistive sen-
sors have been widely used in nanopositioning applications
including atomic force microscopy [2]–[5] and nanofabrica-
tion [6].

The Wheatstone-bridge is a common configuration for
strain gage sensors. In this configuration, the output voltage
difference is proportional to the strain experienced by the
sensors in each arm of the bridge [7]. In applications that
involve equal extension and contraction of the surface area,
full or half-bridge configurations are preferred.

The foremost difficulty with piezoresistive sensors is the
high temperature sensitivity of both the total resistance and
gage factor, described by the TCR (Temperature coefficient
of resistance) and TCGF ( Temperature coefficient of gage
factor). Due to the variation of the gage factor, standard
approaches to temperature compensation, such as the un-
strained sensor method [8], are not effective.

A number of electrical methods have been proposed for
temperature compensation in piezoresistive sensors [9], [10].
However, these methods require equal and opposite strains,
such as that found on the top and bottom of a bending beam.
The smart sensor proposed in reference [11] uses a thin film
thermocouple for temperature measurement. In this method,
three different sensing technologies including thermocouple,
strain gage and heat flux gage were integrated into a single,
multifunctional gage. This configuration provides separate
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Fig. 1. Tee-rosette half-bridge sensor mounted on a piezostack actuator.
Two thermally matched gages a and b are aligned along axes ON and OA
respectively. The dashed lines show the axis of each gage.

temperature, strain and heat flux measurements, however
extensive calibration is required.

The separate measurement of strain and temperature was
reported in reference [12]. In this technique, two sensors
fabricated from different sensing materials were placed in
close vicinity to each other. This temperature and strain are
determined from the differing response of each material;
however, this method can not be applied to piezoresistive
sensors due to temperature sensitivity of the gage factor.
In this paper, a novel technique is described for estimating
the strain and temperature in a piezoresistive half-bridge
arranged in a 90-degree tee rosette. This method is ideal for
applications where only positive strain is produced, for ex-
ample, in piezoelectric stack actuators. The proposed method
is demonstrated by measuring the position of a piezoelectric
stack actuator subjected to temperature variation.

II. PIEZORESISTIVE SENSOR MODELLING

As illustrated in Fig. 1, the tee-rosette piezoresistive sen-
sor used in the proposed design consists of two thermally
matched gages bonded to a backing material. To model the
resistance change in each gage, a single pizoresitive strain
gage subjected to a biaxial strain field is considered first.
When a gage is subjected to strains parallel and normal to
the gage axis, the total change in resistance can be written
as [13]

∆R = ∆Ra + ∆Rn, (1)

where ∆Ra is a change in resistance due to the axial strain
and ∆Rn is a change in resistance due to the normal strain.
Each term on the right-hand side of Eq. (1) can be expressed
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by the general strain gage equation given by

∆R = SεR̄, (2)

where S is strain sensitivity, ε is applied strain and R̄ is
nominal resistance. By substituting Eq. (2) into Eq. (1), the
following equation is found

∆R = SaεaR̄+ SnεnR̄, (3)

where Sa is the axial strain sensitivity, Sn is the normal strain
sensitivity, εa is the axial strain and εn is the normal strain
applied to the sensor. As the sensor specifications typically
include the gage factor (determined under uniaxial strain
field) and the transverse sensitivity factor, Eq. (3) needs to
be written in terms of these two quantities. This can be done
by rewriting Eq. (3) as

∆R = SaR̄(εa +
Sn
Sa
εn). (4)

Here, the ratio Sn/Sa is known as the transverse sensitivity
factor, represented by the symbol K, and Sa is the axial
strain sensitivity identical to the manufacturer’s gage factor
GF [13].

Since the sensors are matched, they have equal strain
sensitivity and transverse sensitivity factor. However, there
is a 90 degree offset between each axis which results in
different strain conditions for each of the sensors. Fig. 1
shows the configuration of each sensor with respect to the
reference axes OA and ON. Here it can be seen that the
strain condition for sensor b is such that strain εa is parallel
to the gage axis, while εn is normal to the gage axis. The
strain condition for sensor c is the opposite. By considering
this and using Eq. (3), the total resistance change in each
sensor can be written as

∆Rb = εaSaR̄b + εnSnR̄b (5)

∆Rc = εnSaR̄c + εaSnR̄c, (6)

where R̄b is the nominal gage resistance of sensor b and R̄c
is the nominal gage resistance of sensor c. Expressing ∆Rb
as Rb − R̄b and rearranging for Rb, and similarly for ∆Rc,
Eq. (5) and Eq. (6) becomes

Rb = R̄b + εaSaR̄b − εnSnR̄b (7)

Rc = R̄c + εnSaR̄c + εaSaR̄c, (8)

In order to estimate temperature and strain independently,
Eq. (7) and Eq. (8) are solved simultaneously for εa and
T . Using the transverse sensitivity factor K = Sn/Sa and
Poisson’s ratio ν = −εn/εa, Eq. (7) and Eq. (8) can be
written as a function of gage factor GF = Sa and axial
strain εa

Rb = R̄b + εaGF R̄b − νεaKGF R̄b (9)

Rc = R̄c − νεaGF R̄c + εaKGF R̄b. (10)

VB
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R𝑏 + ΔR𝑏
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R2
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V−

−VB

+-
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Fig. 2. Schematic of the circuit for real-time resistance readings of sensors
b and c.

The linear temperature dependency of gage factor GF and
resistance R can be expressed by

GF (T ) = GF (1 + β∆T ) (11)

R(T ) = R̄(1 + α∆T ), (12)

where β is the temperature coefficient of gage factor (TCGF)
and α is the temperature coefficient of resistance (TCR).
Including first order temperature variation into Eq. (9) and
Eq. (10) gives,

Rb(εa, T ) = R̄b(1 + α∆T )[εaGF (1 + β∆T )

− νεaKGF (1 + β∆T )] (15)

and

Rc(εa, T ) = R̄c(1 + α∆T )[εaKGF (1 + β∆T )

− νεaGF (1 + β∆T )] (16)

where ν0 is the Poisson’s ratio, K is the transverse sensitivity
factor, εa is the strain in the axial direction, and GF is the
gage factor. With two strain sensors in a tee-rosette config-
uration, a system of two equations has been created which
can be simultaneously solved for strain and temperature. The
resulting independent equations for T̂ and ε̂a are given in
Eq. (13) and Eq. (14). Both equations are functions of two
variables Ra and Rb, plus the sensor characteristic constants
α, β, K, GF , ν, R̄b and R̄c.

III. REQUIREMENTS FOR INDEPENDENT STRAIN AND
TEMPERATURE MEASUREMENT

The real time measurement of strain and temperature
requires sensor resistances to be read online. The resis-
tance readings have been performed using the full-bridge
configuration shown in Fig. 2. Deriving two equations for
the voltages Vd and Vt allows the sensor resistances to be
determined by solving two equations simultaneously. This
gives

Ra(Vt, Vd) =
Rref (R2(VB − Vt) + Vd(R1 +R2)

VB(R1 +R2) +Rref (Vt − VB)
1 + Vt(R1 +R2)

(17)
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T̂ (Rb, Rc) =

R̄bR̄c − R̄bRc −KR̄bR̄c +KR̄bRb + R̄bR̄cν − R̄cRcν − R̄bR̄cT0α
1 −KR̄bR̄cν +KR̄bRbν +KR̄bR̄cT0α− R̄bR̄cT0αν +KR̄bR̄cT0αν

R̄bR̄cα(K − ν +Kν − 1)
(13)

ε̂(Rb, Rc) =
(R̄aR̄bα(R̄bRa − R̄aRb)(K − 1)(ν + 1))

(GF (R̄bRc −KR̄cRb + R̄cRbν −KR̄bRcν)(βR̄bR̄c + βR̄bR̄c − R̄bR̄cα− βKR̄bR̄c + βKR̄cRb
1 +KR̄bR̄cα+ βR̄bR̄cν − βR̄bR̄cRbν − R̄bR̄cαν +KR̄bR̄cαν − βKR̄bR̄cν + βKR̄bRcν))

(14)
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Fig. 3. Data acquisition and signal processing chain of a piezoresistive
strain sensor.

and

Rb(Vt, Vd) =
−Rref (Vd(R1 +R2) +R1(Vt − VB))

VB(R1 +R2) +Rref (Vt − VB)
1 + Vt(R1 +R2)

(18)

where VB , R1, R2 and Rref are constants. Apart from
resistance values, accurate measurement of strain and tem-
perature also requires accurate knowledge of sensor param-
eters. Due to different thermal expansion coefficients of ma-
terials, strain gage sensors will have different characteristic
parameters after being bonded on the specimen. Therefore, a
calibration experiment must be performed initially to identify
the parameters including α (TCR), β (TCGF) and gage factor
GF .

Local optimization techniques can be used to identify
the set of model parameters that minimize error between
the estimated and true measured value. As the optimization
process seeks a point that is locally optimal, the quality of th
initial guess can critically affect the solution [14]. Therefore,
an initial calibration procedure is proposed to identify a
suitable starting point for the optimization process.

IV. IMPLEMENTATION AND INITIAL CALIBRATION

The proposed technique is demonstrated on a half-bridge
piezoresistive sensor bonded to the 150V piezoelectric stack
actuator shown in Fig. 1. The block diagram shown in
Fig. 3 illustrates the data acquisition process, in addition to
the basic input/output structure of the sensor. The real-time
data acquisition process was performed by Matlab/Simulink
software utilizing a dSPACE DS1103 board. In this process,
the voltage readings from the bridge circuit were converted to
a discrete time format using three analog to digital converters
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ez
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Fig. 4. Experimental set-up for piezoresistive strain sensor calibration.

with a 1-kHz sampling rate. Following the ADCs, a moving
average FIR filter is used to reduce the quantization and
measurement noise. The initial calibration process identifies
the parameters describing the sensor characteristics including
gage factor, TCR and TCGF. A sketch of the experimental
set-up for calibration is shown in Fig. 4, where a laser inter-
ferometer and digital thermometer were used for true strain
and temperature measurements. A power resistor is used
to heat the stack actuator directly. To minimize heat flow,
the actuator is glued to an insulator with a low expansion
coefficient. Since objects dimensions are a function of tem-
perature, a compensation for induced strain due to thermal
expansion is required. A differential measurement by laser
interferometer is used for thermal expansion compensation.
Simultaneous measurements from the rigid body and the
stack actuator provide the true strain measurement due to
actuation voltage. This can be expressed as

εa = εp − εt, (19)

where εa is the true strain in the axial direction, εt is the
strain due to thermal expansion and εp is the strain due
to the combination of actuation voltage and the thermal
expansion. Accurate temperature readings were performed
using a K-type thermocouple bonded to the stack actuator.
In the calibration process, the stack actuator was driven in
the range between 0V to 140V at 10Hz while, depending
on the parameters to be calculated, either temperature or
strain was held constant. In case of the gage factor, the stack
actuator was driven in a range between 20− 140V in a 20V
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Parameter Initial Optimal
Nominal Resistance, Ra 1033Ω 1378
Nominal Resistance, Rb 970Ω 1357

Poisson’s Ratio, ν0 −0.3 0.6275
Sensitivity ratio, K 0.002 0.0048
Gage Factor, GFa 92.2 37.79

TCR, α 0.0063 0.057
TCGF, β −0.02 −0.03

TABLE I
INITIAL AND OPTIMAL VALUES OF PIEZORESISTIVE SENSOR

CHARACTERISTIC PARAMETERS.

25 30 35 40

-0.3

-0.2

-0.1

0

y = -0.019 x + 0.445

Data

Best Fit

Fig. 5. Temperature coefficient of gage factor. The slope of the best fit
line reveals the TCGF value.

steps at 10Hz while the temperature was kept constant at
nominal temperature (25◦C). In this process, the resistance
Rb was recorded and the true strain was measured by the
interferometer. The ratio of the fractional change in electrical
resistance to the mechanical strain is shown in Fig. 7. Here,
the slope of best fit corresponds to the gage factor of the
sensor Rb which is 92.2.

For TCGF and TCR calibrations, temperature was varied
between nominal 25◦C and 45◦C while the sensor was
held in a constant strain field. The variations in the gage
factor and sensor resistance with respect to changes in
temperature are shown in Fig. 5 and Fig. 6. Using the slope
of best fit, the temperature coefficient of gage factor and
the temperature coefficient of resistance were found to be
−0.02% and 0.063%, respectively. The parameters of the
sensor are summarized in Table I.

V. PIEZORESISTIVE SENSOR PARAMETER
IDENTIFICATION

A schematic of the piezoresistive sensor is depicted in
Fig. 8. Here, Rb and Rc are the inputs, ε̂a is the output, and
θ is the vector of optimization parameters including α, β,
GF , R̄b, R̄c, ν and K.
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Fig. 6. Temperature coefficient of resistance. The slope of the best fit line
reveals the TCR value.
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Fig. 7. Resistive response of the sensor b to the applied strain at ambient
temperature.

The data set used for the optimization covers both temper-
ature and strain variations. Let Z be the input and output data
recorded over a temperature range of −15◦C ≤ T ≤ 40◦C:

Z =
{

[u(T1), ..., u(TN )], [y(T1), ..., y(TN )]
}
, (20)

where

u =
[ Rb︷ ︸︸ ︷

[Rb(T1), ..., Rb(TN )],

Rc︷ ︸︸ ︷
[Rc(T1), ..., Rc(TN )]

]
(21)

y =
[ ε̂a︷ ︸︸ ︷

[ε̂a(T1), ..., ε̂a(TN )],

εa︷ ︸︸ ︷
[εa(T1), ..., εa(TN )

]
. (22)

Then the optimization objective is to find a θ that minimizes

J(θ, Z) = ||εa − ε̂a(θ, u)||2. (23)

Then the value of θ that minimizes Eq. (23) is

θ = arg min
θ

J(θ, Z), (24)

a local solution to this problem is obtained using the Nelder-
Mead algorithm [15].
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Fig. 8. Schematic of the strain estimation scheme.

Strain (%)
30 40 50 60 70 90

◦C Percentage Error (%)
−15 5.09 3.21 3.47 0.55 −0.76 2.90
−10 2.37 0.80 1.53 −1.12 −2.13 1.73
−5 0.29 −0.98 0.11 −2.33 −3.09 0.94
0 −1.19 −2.21 −0.80 −3.08 −3.64 0.50
5 −2.13 −2.90 −1.25 −3.40 −3.81 0.41
10 −2.13 −2.90 −1.25 −3.40 −3.59 0.67
15 −2.38 −2.72 −0.75 −2.74 −2.98 1.29
20 −1.69 1.82 0.21 −1.73 −1.96 2.29
25 −2.56 −4.67 −2.70 −4.36 −4.07 0.46
30 −1.43 −3.49 −1.37 −3.02 −2.73 1.90
35 0.80 −1.50 0.54 −1.04 −0.81 3.61
40 4.49 1.89 3.54 1.82 1.67 5.89

TABLE II
PERCENTAGE ERROR IN THE AXIAL STRAIN MEASUREMENTS OVER A

TEMPERATURE RANGE OF -15◦C TO 40◦C.

VI. SENSOR RESPONSE TO TEMPERATURE AND STRAIN

The optimal parameters of the sensor, found when solving
Eq. (24) are summarized in Table I. The resulting errors
in the axial strain estimation are shown in Table II. The
simulation results show an average mean absolute error of
2.16% over a temperature range of -15◦C to 40◦C. This
is a significant result as no additional circuit is used for
temperature compensation.

VII. CONCLUSIONS

the article proposes a new technique for independent
estimation of temperature and strain in piezoresistive sensors.
From two piezoresistive sensors in a tee-rosette configura-
tion, a system of two linear equations is created that allows
independent strain and temperature estimations.

The required data acquisition and initial calibration pro-
cess were demonstrated. To minimize the error between
estimated and true strain, the optimal sensor parameters were
found usinga calibration and optimization procedure. The
resulting strain estimate shows an average mean absolute
error of 2.16% over a temperature range of -15◦C to 40◦C.

Current work is focused on improving the automation and
precision of the calibration procedure by using a temperature
controlled environmental chamber.
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