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Abstract— This article describes the design, modeling and
simulation of a serial-kinematic nanopositioner machined from
a single sheet of piezoelectric material. In this class of nanopo-
sitioners, the flexures, sensors and actuators are completely
integrated into a single monolithic structure. A non-trivial
electrode topology is etched into the sheet to achieve in-
plane bending and displacement of the moving platform. Finite
element analysis predicts a sensitivity of 18.6 nm/V in the x-axis
and 18.1 nm/V in the y-axis with a voltage limit of -250 V to
1000 V. The first resonance frequency is 250 Hz in the Z axis.
This design enables high-speed, long-range, lateral positioning
in space-limited applications.

I. INTRODUCTION

Nanopositioners encompass a set of devices whose motion
is controlled with nanometer resolution [1]. Nanopositioners
enable the characterization and manipulation of matter at
nanoscales and are a core technology in the nanotechnology
field. Applications include atomic force microscopy [2]–[7],
data storage [8], nanofabrication [9], [10], cell surgery [11],
and precision optics [12].

The piezoelectric tube nanopositioner [13] exemplifies the
first widely utilized nanopositioning system. These mono-
lithic devices are easy to fabricate, and easily integrate
into larger systems such as microscopes. However, with
their maximum displacement range being a function of tube
length, these tubes are unable to be miniaturized. In addition,
the speed of the tube is limited by lateral resonances, and
cross-coupling between the lateral and vertical directions
limit there utility [14].

To address the performance limitations of the tube
and other monolithic nanopositioning designs, flexure-based
nanopositioners have been reported as an alternative [15]–
[19]. High stiffnesses are achieved by fabricating the flexures
from bulk metal which increases the bandwidth and reduces
the cross-coupling compared to monolithic designs. Large
piezoelectric stack actuators are required to drive the stiff
flexures which requires the use of specialized amplifiers to
handle significant electrical loads. This drastically increases
the cost and size of flexure based nanopositioners.

To capture the advantages of both monolithic and flexure
based nanopositioners, a new class of nanopositioning stages
constructed from a single sheet of piezoelectric material has
been reported [20]. Guiding flexures are etched into the
structure with individual electrical control over each active
flexure. They are the thinnest yet reported nanopositioning
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stages with a thickness of within 500 µm to 1.5 mm. This
new class of nanopositioners will enable a new range of
ultra-compact applications in scanning probe microscopy,
scanning electron microscopy, and active optics.

This work proposes a new monolithic nanopositioner de-
sign with a serial-kinematic structure which provides several
advantages over the parallel-kinematic design reported by
[20]. One advantage is that the serial-kinematic flexures do
not experience compression, which leads to increased range.
A disadvantage is the increased mechanical and electrode
complexity.

The remainder of the paper precedes as follows. Section II
outlines the structural design, fabrication, and actuating
principles of the nanopositioner. Section III models the
static motion of a single flexure actuator which is employed
in Section IV to produce a lumped model of the entire
nanopositioner. Section V validates the static modeling of the
nanopositioner and presents a model analysis of the design.

II. DESIGN AND FABRICATION

Figure 1(a) shows the fabricated serial-kinematic nanopo-
sitioner where a smaller inner stage is nested into a larger
outer stage. The nanopositioner is fabricated from a single
square sheet of PZT-5H ceramic of thickness 500 µm. The
piezoelectric sheet is coated with a 5 µm layer of nickel on
both sides. The mechanical and electrode features are created
by laser machining and surface ablation. Figure 1(c) shows
the mechanical features and the nickel electrode arrangement
with dimensions. The nickel layer on the reverse side is not
etched.

The motion of the X and Y axes are constrained by a set of
thick flexures on either side of the stage. The flexures guide
the nanopositioner in the compliant directions, and provide
the mechanism for actuation. The inner x-axis is guided by 4
active flexures and two non-active flexures. The outer y-axis
is guided by 20 active flexures.

The electrode over each active flexure is split into four
quadrants as shown in Figure 2. Two sections are formed by
electrically connecting the first and third quadrants for one
section and the second and fourth for the other section. With
the bottom electrode grounded, opposite voltages are applied
to the two sectioned electrodes to create side-to-side motions.
When actuators of a single axis are moved towards the
same direction, translational motions are generated. When
the actuators of each stage are moved in opposite directions,
rotational motions are generated. Considering the complete
nanopositioner, Figure 1(b) shows the electrode sections of
the entire set of flexures to achieve translation in the X and
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(a) The machined piezoelectric sheet forming the nanopositioner.
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(b) The electrode sections of the nanopositioner for translation in
the X and Y axes.

(c) The dimensions of the nanopositioner. Cutouts are shown in
white, the nickel coating is shown in grey and the PZT-5H is shown
in black.

Fig. 1. The nanopositioner design. (a) The photo of the prototype design.
(b) Schematic of the piezoelectric electrode layout. (c) Schematic with the
structural dimensions.

Fig. 2. The flexure has four electrodes on each quarter of the beam in
the x-y plane. Two of the electrodes are actuated positively and the other
two are actuated negatively. The diagram shows the positive orientation of
a cross section’s deflection w0(x), rotation w′

0(x), and bending moment
M(x).

Y axes. The sections on each axis are driven with opposite
polarity voltages, where sections 1 and 2 develop motion in
the Y axis and sections 3 and 4 develop motion in the X
axis.

III. STATIC MODELING OF A FLEXURE

The constitutive equations of the piezoelectric material
which forms the flexures relates the stress, strain, and electric
field in the material. The electric field is a function of the
applied voltages (the input), the strain is related to the deflec-
tion of the flexure (the output), and the stress in the flexure
is quantified with an equilibrium condition. The modeling
objective is to find the electric field-voltage relationship
and the stress-displacement relationship, and finally use the
constitutive equations and the equilibrium condition to find
the voltage-deflection characteristic. A diagram of the flexure
is shown in Figure 2.

a) Stress-Displacement Relationship: Euler-Bernoulli
beam theory parameterizes the 3-dimensional displacement
field in the flexure in terms of the 1-dimensional deflection
of the flexure w0 [21]–[23]:

u1(x, y, z) = −yw′
0(x), (1)

u2(x, y, z) = w0(x), (2)
u3(x, y, z) = 0, (3)

where (u1, u2, u3) is the displacement of an infinitesimal
piece of the flexure in the x-y-z-axes respectively, and the
prime (′) is the derivate with respect to x. The quantity w′

0 is
the angle of rotation of a cross-section of the flexure around
the neutral axis. The displacement field indicates that: the
displacement in the y-axis is solely due to the deflection
of the flexure; there is no displacement in the z-axis; and
displacement in the x-axis is due to rotation of a flexure
cross-section. With the given displacement field above, there
is only one non-zero component of the strain:

S1(x, y, z) = u′
1 = −yw′′

0 . (4)

b) Electric Field-Voltage Relationship: A parallel-plate
capacitive structure is assumed to model the generated elec-
tric field. One-side of the flexure is grounded, and the other
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is split into four electrodes distributed in the x-y-plane.
The piezoelectric flexure is polarized along the z-axis. The
electric field is:

E3(x, y, z) =
V (x, y)

tz
, (5)

where tz is the thickness of the flexure in the z-direction and
the voltage is:

V (x, y) =


−V0 x < L/2, y > 0
V0 x < L/2, y < 0
V0 x > L/2, y > 0
−V0 x > L/2, y < 0

, (6)

where V0 is the input voltage.
c) Constitutive Equations and the Bending Moment:

An Euler-Bernoulli beam has only one non-zero stress and
strain component, and the electric field is only applied
in the direction of piezoelectric polarization. In this case,
the constitutive equations of a linear piezoelectric material
simplify to:

T1 = c11S1 − e31E3, (7)
D3 = e31S1 + ε33E3, (8)

where T1 is the stress, D3 is the electric displacement, c11
is Young’s modulus, e31 is the piezoelectric coefficient, and
ε33 is the permittivity. Substituting Equations (4) and (5) into
Equation (7) allows the stress to be expressed in terms of the
input voltage and output displacement as:

T1(x, y, z) = −c11yw
′′
0 (x)− e31

V (x, y)

tz
. (9)

Next consider a cross-sectional piece of the flexure. The
stresses cause a moment to be applied to the cross-section
causing it to rotate. The moment around the neutral axis of
the flexure is:

M(x) =

∫
A

yT1 dy dz, (10)

where A is the domain of the cross-section, and the origin
in the y-axis is the neutral plane along the center of the
flexure. Substituting Equation (9) into the above equation
and integrating results in:

M(x) = −c11Iw
′′
0 (x)− kV V0, (11)

where the moment of inertia I and actuation gain kV are:

I = tz

∫ ty/2

−ty/2

y2 dy =
tzt

3
y

12
, (12)

kV =

 e31
∫ ty/2

0 −y dy+
∫ 0
−ty/2

y dy=−
e31t2y

4 x<L/2

e31
∫ ty/2

0 y dy+
∫ 0
−ty/2

−y dy=
e31t2y

4 x>L/2
, (13)

= −
e31t

2
y

4

(
1− 2h(x− L

2 )
)
, (14)

where h(x) is the step function.

d) Equilibrium and the Displacement Characteristic:
When the flexure has settled to equilibrium, the net mo-
ment and net shear on each cross section is zero. With
no externally applied shear force or bending moment, the
internal bending moment on each cross section is zero, that is
M(x) = 0. Applying this condition to Equation (11), making
w′′

0 the subject and substituting in Equation (14) leads to the
expression:

w′′
0 (x) =

e31t
2
y

4c11I

(
1− 2h(x− L

2 )
)
V0. (15)

This expression is integrated once to get the angle of
rotation of the cross-section, and integrated twice to get the
deflection. The constants of integration are evaluated with the
geometric boundary conditions w′

0(0) = 0 and w0(0) = 0.
The rotation and deflection of the flexure are:

w′
0(x) =

e31t
2
y

4c11I

(
x− 2(x− L

2 )h(x− L
2 )
)
V0, (16)

w0(x) =
e31t

2
y

4c11I

(
x2

2
− (x− L

2 )
2h(x− L

2 )

)
V0. (17)

The expressions are evaluated at x = L to give the rotation
and deflection at the tip of the flexure as a function of the
input voltage:

w′
0(L) = 0, (18)

w0(L) =
e31t

2
yL

2

16c11I
V0. (19)

IV. STATIC GAIN OF THE INNER AND OUTER STAGES

The model of the inner and outer axes are formed by
considering each stage to be rigid with a set of lumped
springs guiding it and force actuators driving it. The objective
is to derive a one degree-of-freedom model of the flexures,
that can easily be combined into a lumped model. This
is achieved by parameterizing the motion of the flexure
with one degree-of-freedom and deriving its characteristic
equation with the principle of minimum potential energy.
By equating the characteristic equation with Hooke’s law,
the effective stiffness and force of a flexure is obtained.

a) One Degree-of-Freedom Flexure Model: The en-
thalpy of the flexure is a combination of the total strain
energy and electrical energy stored in the flexure [24]:

H =
1

2

∫
V

T1S1 −D3E3 dV, (20)

=
1

2

∫ L

0

c11I
(
w′′

0

)2
+ 2kV V0w

′′
0 − ε33tztyE

2
3 dx. (21)

For a one degree-of-freedom system, the solution for the
piezoelectric flexure’s transverse deflection is assumed to be:

w0(x) = q0W0(x), (22)

where q0 is the deflection at the end of the flexure, the one
degree-of-freedom, and W0(x) is the assumed spatial distri-
bution of the transverse deflection. Substituting Equation (22)
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TABLE I
PARAMETERS OF THE PIEZOELECTRIC FLEXURES FOR MODELING.

Description Parameter Value

Flexure Length (mm) L 17.5
Flexure Thickness (mm) ty 5
Small Flexure Thickness (mm) t̄y 2
Flexure Width (mm) tz 0.5
Elastic Modulus (GPA) c11 66
Density (kg/m3) ρ 7800
Piezoelectric Coefficient (C/m2) e31 -10.92
Number of Inner Stage Flexures ni 4
Number of Small Inner Stage Flexures n̄i 2
Number of Outer Stage Flexures no 20

into Equation (21) allows the enthalpy to be expressed in
terms of the degree-of-freedom q0:

H =
1

2
keq

2
0 − feq0 − ε33tytzE

2
3 , (23)

where the parameters ke and fe are given by:

ke =

∫ L

0

c11I
(
W ′′

0

)2
dx, (24)

fe = −
∫ L

0

kV V0W
′′
0 dx. (25)

The principle of minimum total potential energy states that
the first variation of the enthalpy is zero [23]. The principle
is applied to Equation (23) and is evaluated as:

0 = δH = (keq0 − fe) δq0, (26)

where δ is the variational operator. This equation holds when:

keq0 = fe. (27)

This characteristic equation of the one degree-of-freedom
model matches Hooke’s law making ke the effective stiffness,
and fe the effective force of the flexure.

The spatial distribution W (x) of the deflection is chosen
from the solution of the static deflection from Equation (17).
It is scaled to ensure q0 is the tip deflection. The spatial
distribution is:

W0(x) =
4

L2

(
x2

2
− (x− L

2 )
2h(x− L

2 )

)
. (28)

With W0(x) defined as above, Equations (24) and (25) are
evaluated for the effective stiffness and force of a flexure as:

ke =
16c11I

L3
, (29)

fe =
e31t

2
y

L
V0. (30)

b) Lumped Model of the Inner Stage: The effective
stiffness and force of the inner stage of the nanopositioner
is:

kinner = nike + n̄ik̄e, (31)
finner = nife, (32)

where ni is the number of flexures connected to the stage.
There are two smaller flexures connected to the inner stage

TABLE II
PIEZOELECTRIC PROPERTIES FOR THE PZT-5A BIMORPH SHEET FROM

PIEZO SYSTEM INC.

Piezoelectric coefficient, C/m2

e31 -10.92
e33 12.08
e15 12.29

Relative permittivity, ε = εS/ε◦

ε11 916
ε33 830

Piezoelectric constant, pm/V

d31 -190

TABLE III
COMPARISON OF ANALYTICAL AND FEA STATIC GAINS.

Static gain (nm/V) Analytical ANSYS

Inner stage (x-axis) 14.7 18.6
Outer stage (y-axis) 15.2 18.1

which provide no actuation. Their number, thickness and
effective stiffness are designated n̄i, t̄y , and k̄e. With the pa-
rameters in Table I the gain of the inner axis is 14.73 nm V−1.

c) Lumped Model of the Outer Stage: The effective
stiffness and force of the outer stage is:

kouter = noke (33)
fouter = nofe (34)

where no is the number of flexures connected to the outer
stage. The gain of the outer stage with the parameters in
Table I is 15.20 nm V−1.

V. FINITE-ELEMENT-ANALYSIS

A numerical finite-element (FE) model of the monolithic
stage was constructed using ANSYS workbench. Displace-
ment of all four edges of the stage are fixed as shown
in Figure 3. The piezoelectric properties of the stage are
modeled using the ANSYS Piezo and MEMS Application
Customization Toolkit (ACT) extension. The piezoelectric
properties for PZT-5A are listed in Table II. Each piezoelec-
tric layer is polarized outwards along its thickness direction.

A. Static gain

To obtain the displacement per unit voltage along the x
and y axes, +1 V and -1 V is applied to the electrodes
in orange and blue respectively as shown in Figure 3. The
corresponding displacement is shown in the same figure.
The static gain of the inner (x-axis) and outer (y-axis)
platform is 18.6 nm/V and 18.1 nm/V respectively. The
breakdown electric field strength of PZT5H is −500 V mm−1

to 2 kV mm−1 allowing for a voltage of -250 V to 1000 V
to be applied. Therefore the range of the nanopositioner is
23.250 µm in the x-axis and 22.625 µm in the y-axis. Table III
compares the analytical and ANSYS results for the static
gains, which are in close agreement.
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Fig. 3. Simulated displacement along the x and y axes when +1 V is
applied to the electrodes in orange and -1 V is applied to the electrodes in
blue.

B. Resonance frequencies

The resonance frequencies of the stage were simulated
using the modal analysis module of ANSYS. The first four
modes are shown in Figure 4(a)-(d). The first resonant mode
is the out-of-plane mode along the z-axis which appears at
249 Hz.

To search for the lateral modes along the x and y axes
of the stage, the out-of-plane motions along the z-axis were
constrained. Figures 4(e) and 4(f) show the lateral modes
of the stage. The lateral resonance frequencies appear at
5243.3 Hz and 5225.2 Hz along the x and y axes respectively.

VI. EXPERIMENTAL RESULTS

Preliminary experimental work characterizes the lateral
displacement of the nanopositioner and x-y-z frequency
response under lateral actuation. Frequency responses were
measured with a Polytec MSA-100-3D laser vibrometer, and
displacement responses were measured with an Attocube
FPS3010 interferometer.

Figure 5 shows the displacement in the inner x-axis
and outer y-axis under the corresponding lateral actuation.
For a ±200 V input voltage, the inner x-axis displaced by
10.08 µm and the outer y-axis displacement by 10.45 µm.
The per volt static gains of the stage are 25.2 nm/V and
26.1 nm/V for the x and y axes respectively. These gains are
higher than predicted due to uncertainty in the piezoelectric
coefficient. In addition, Figure 5 shows the typical hysteresis
non-linearity associated with piezoelectric actuators. This is
caused by the applied voltage altering the polarization of
the piezoelectric material. This non-linearity, while expected,
is not modeled by the linear constitutive equations used to
model the stage.

(a) First mode: 249 Hz (b) Second mode: 388.6 Hz

(c) Third mode: 547.9 Hz (d) Fourth mode: 564.4 Hz

(f) Lateral mode along
the y-axis: 5225.2 Hz

(e) Lateral mode along
the x-axis: 5243.5 Hz

Fig. 4. Simulated resonance frequencies of the serial-kinematic planar
stage.

Figure 6 shows the displacement frequency response in
the range 100 Hz to 1 kHz. The lateral motion exhibits no
dynamics in this range as expected while a number of
resonances are observed in the out-of-plane z-axis motion.
The largest peaks in the frequency responses match the FE
modal analysis from the FEA (Figure 4). The additional
smaller modes are associated with coupling between the
stage and the metal frame it is mounted in.

VII. CONCLUSIONS

The monolithic construction of the nanopositioner simpli-
fies fabrication making it accessible to many cost sensitive
applications. Fabricated from a thin piezoelectric sheet, the
nanopositioner is well suited to ultra-compact designs. The
flexure based design pushes the lateral resonance frequencies
to much higher frequencies compared to tube based nanopo-
sitioners. And compared to other flexure based designs, the
size of the electrical load is significantly reduced. Compared
to the previous reported parallel-kinematic nanopositioner,
the serial-kinematic design extends the range and reduces
the cross coupling.

The authors are currently experimentally characterizing
the nanopositioner, developing feedback control strategies
for precision motion control, and refining the instrumentation
methods employed with the nanopositioner.
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