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Abstract— The paper describes design, modeling and control
of a five-axis monolithic nanopositioning stage constructed
from a bimorph piezoelectric sheet. In this design, actuators
are created by removing parts of the sheet using ultrasonic
machining. The constructed nanopositioner is ultra-compact
with a thickness of 1 mm. It has a X and Y travel range of
15.5 µm and 13.2 µm respectively; a Z travel range of 26 µm;
and a rotational motion about the X- and Y-axis of 600 µrad
and 884 µrad respectively. The first resonance frequency occurs
at 883 Hz in the Z-axis, and the second and third resonance
frequency appears at 1850 Hz, rotating about the X- and Y-
axis. A decentralized control strategy is implemented to track Z,
θx and θy motions. The controller provides good tracking and
significantly reduces cross-coupling motions among the three
degrees-of-freedom.

I. INTRODUCTION

Nanopositioning systems are devices used extensively

in applications requiring sub-nanometer resolutions [1]–[3].

Applications include atomic force microscopy [4]–[6], data

storage [7], nanofabrication [8], [9], cell surgery [10] and

precision optics [11].

The piezoelectric tube scanner has been one of the

most commonly used nanopositioner in scanning probe mi-

croscopy [12], [13]. This class of monolithic nanopositioners

is economical, easy to fabricate and can provide up to

three degrees of freedom (DOF) motion with sub-nanometer

resolution. However, to achieve large travel range, a long

piezoelectric tube is required. This results in a lower reso-

nance frequency and significant cross-coupling between the

lateral and vertical directions [13], [14].

In the last decade, piezoelectric tube scanners have been

replaced by flexure-based nanopositioners in atomic force

microscopy in order to improve scan speed and reduce cross-

coupling motions among all axes [15], [16]. The moving plat-

forms of these high-speed positioning devices are guided by

metal flexures and driven by piezoelectric stack actuators [3],

[16], [17]. The high stiffness of flexures in the out-of-

plane directions significantly reduces cross-coupling motion

and allows for a higher payload than monolithic devices.

There are many commercial available flexure-based nanopo-

sitioner designs ranging from one-DOF to six-DOF [18].

However, these designs are more costly, heavier, and bulkier

than monolithic devices especially for positioners with high

DOFs [1].
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A new class of monolithic nanopositioner constructed

from a single piezoelectric sheet was proposed in [1], [19],

[20]. In these two-DOF monolithic nanopositioners, parts of

the sheet are removed to create active flexures which are

used to simultaneously drive and guide the moving platform

along the X- and Y-axis. These devices have the lowest

profile for nanopositioning stages yet with a thickness of

within 500 µm to 1.5 mm. The extremely thin design of

the nanopositioner enables a new range of applications in

atomic force microscopy, and particularly, scanning electron

microscopy where the load-lock area may be less than 5 mm

in height [21]. This work proposes a new design which

extends the DOFs of the previously proposed monolithic

nanopositioners from two to five. The five DOFs include

three translational motions along the X-, Y- and Z-axis,

and two rotational motions about the X- and Y-axis. The

five-axis monolithic nanopositioner is constructed from a

bimorph sheet of piezoelectric material which has a thickness

of only 1 mm. Ultrasonic machining is used to remove

piezoelectric material to create a series of bimorph flexures

and electrode features. The bimorph flexures are connected to

a moving platform, and there are served as actuators as well

as mechanical guides to the platform. By driving the bimorph

flexures with a combination of voltages, the flexures provide

in-plane and out-of-plane bendings which in turns generating

the five-axis of motions.

The remainder of the paper precedes as follows. Section II

describes the design of the monolithic stage and the actuating

principles for generating the five DOFs. Section III presents

the analytical models which describe the relationship be-

tween force/deflection and the applied voltage, effective

stiffness, effective mass and resonance frequency for each

DOF. Finite-element simulations are presented in Section IV,

followed by experimental results in Section V. SectionVI

presents a decentralized control strategy to improve tracking

and reduce cross-coupling effect in closed-loop. Section VII

concludes the paper.

II. DESIGN

The bimorph monolithic nanopositioner is illustrated in

Fig. 5. The nanopositioner is fabricated from a bimorph

piezoelectric sheet of PZT-5A with sputter-coated 5 µm
Nickel electrodes. The dimension of the piezoelectric sheet

is 72.3 mm×72.3 mm×1 mm. The mechanical and electrode

features were created by ultrasonic machining of the bimorph

sheet. The final shape and critical dimensions of the nanopo-

sitioner are illustrated in Fig. 1. The electrode features were
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Fig. 1. From the left: Parameters of the bimorph stage; X-axis translation and the corresponding applied voltages; Z-axis translation and the corresponding
applied voltages; Rotational motion about the Y-axis and the corresponding applied voltages.

created on both top and bottom surfaces while the middle

layer is grounded.

The actuating principles for generating the five DOF

motions are shown in Fig. 1. Assuming that each layer is

outwardly poled and with middle layer grounded, a positive

voltage applied to the top and bottom surface will cause the

beam to expand and displace the central platform away from

the positive voltage. For example, when a positive voltage

is applied to the vxt+ and vxb+ electrode, and an equal and

opposite voltage is applied to the vxt− and vxb− the central

platform will translate in the negative X-direction.

III. MODELING

In this section, a static model is derived to describe the

relationship between force/deflection and the applied voltage

for each DOF. The effective stiffness and effective mass for

each DOF are also derived for estimating the corresponding

resonance frequency. Fig. 1 shows the parameters used in the

analytical equations.

A. Translational DOF along the X/Y-axis

The generated force, effective stiffness and deflection of

the stage for this DOF have been derived in [1]. There are,

Fx = Nd31kxV, kx = N
cEA

Lf
, δx =

Lfd31
tp

V. (1)

where N is the number of actuator beams, d31 is the

piezoelectric strain constant, cE is the Young’s modulus of

elasticity, A is the cross-sectional area, Lf is the actuator’s

length, tp is the thickness of each piezoelectric layer, and

V is the applied voltage. With the given dimensions and

material properties in Table I, the estimated static gain along

the X and Y axes is 15.6 nm/V.

Effective mass of an extended beam can be estimated as

0.23ρALf [22]. Thus, the total effective mass is

Me,δx = N (0.23ρALf ) +mp, (2)

TABLE I

DIMENSIONS AND MATERIAL PROPERTIES OF THE BIMORPH STAGE.

Description Parameter Value

Thickness of a single piezoelectric layer, mm tp 0.5
Thickness of the bimorph sheet, mm t 1.0
Actuator beam length, mm Lf 20
Length of platform, mm Lp 19
Half-length of platform, mm a 9
Width of actuator beam, mm w 3

Young’s modulus, GPa cE 66
Poisson’s ratio v 0.35

Density, kg/m3 ρ 7800
Piezoelectric constant, pm/V d31 -190

where mp = 2ρL2
ptp is the mass of the platform, and ρ is the

material density. With the known effective mass and stiffness

calculated in (1) and (2), the resonance frequency along the

X and Y axes is estimated to be 18.2 kHz.

B. Translational DOF along the Z-axis

A fixed-guided beam as shown in Fig. 2 is used to

derive the analytical equations for this DOF. For a bimorph

piezoelectric bender, the constitutive equations for the two

layers are [23],

Upper layer, S1 = sE11T1 − d31E3, (3)

Lower layer, S1 = sE11T1 + d31E3, (4)

where S1 and T1 are the strain and stress along the length

of the bender, E3 is the electric field, and sE11 = 1/cE is the

elastic compliance. Substituting S1 = zκ into (3) and (4),

where κ is the curvature, and z is the distance to the neutral

axis of the bender, gives

Upper layer, T1 = cE11κz + cEd31E3, (5)

Lower layer, T1 = cE11κz − cEd31E3, (6)

For an elementary area dA, the elementary moment dM
caused by the force normal to dA is dM = zdF , and
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Fig. 2. An actuated bimorph beam along the X-axis where its right-hand
end is fixed and its left-hand end is guided.

dF = T1dA = T1wdz, where w is the width of the beam.

Thus,

dM = T1wzdz. (7)

Substituting (5) and (6) into (7), the bending moment can be

expressed as,

M =

∫ 0

−tp

(

cEκz − cEd31E3

)

wzdz

+

∫ tp

0

(

cEκz + cEd31E3

)

wzdz. (8)

Solving the above equation gives,

M =
t2pwc

E (3E3d31 + 2κtp)

3
. (9)

Rearranging and substituting E3 = V/tp into (9), we obtain

the curvature of the actuator beam as

κ =
3

2cEt3pw
M −

3d31
2t2p

V = αM − βV, (10)

where α = 3

2cEt3pw
and β = 3d31

2t2p
. From (10), it can be seen

that the bending curvature of the bimorph actuator is related

to the moment and applied voltage.

Fig. 2 shows a bimorph beam with a fixed-guided bound-

ary condition. The deflection of the bimorph beam under the

applied voltage V and moment M is estimated by double

integrating the bending curvature, which gives

δz(x) =

∫∫

κdx =

∫ Lf

0

(αMx− βV x)dx

=
L2
f

2
(αM − βV ), (11)

According to Roark’s formulas [24], the deflection and the

moment at the guided-end of the beam is

δz =
−FzL

3
f

12cEIy
, M =

FzLf

2
. (12)

where Iy = wt3/12. Substituting (12) into (19), Fz can be

expressed as,

Fz =
18cEIyd31tpw

Lf

(

2wt3p + 9Iy
)V, (13)
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Fig. 3. (a) Side-view of the stage showing its rotational motion about
the Y-axis. (b) The bimorph beam is one-half of the planar stage along the
X-axis where it is fixed on the right-hand end and pinned on the left-hand
end.

and the stiffness of the bimorph beam along the Z-axis can

be expressed as

kz =

∣

∣

∣

∣

Fz

δz

∣

∣

∣

∣

=
12cEIy
L3
f

. (14)

There are 20 actuator beams in total. Using (13) and (14),

the total effective force and stiffness are

Fe,δz = 20Fz, Ke,δz = 20kz. (15)

The deflection of the platform is therefore

δz =
Fe,δz

Ke,δz
=

Fz

kz
. (16)

which is calculated to be 59.9 nm/V.

The effective mass of the stage can be obtained using the

Rayleigh’s principle as reported in [1]. The total effective

mass is

Me,δz = 20

(

13

35
mb

)

+mp. (17)

where mb = ρwtpLf is the mass of the actuator beam,

and mp is the mass of the platform. Using (15) and (17),

the resonance frequency along the Z-axis is calculated to be

1082 Hz.

C. Rotational DOF about the X/Y-axis

A fixed-pinned boundary condition is considered for the

rotational DOF about the X/Y-axis of a single beam, as

shown in Fig. 3. Due to symmetry, the derivation for both

axes is the same, thus only θy is shown here. θy can be found

by finding δz at x = a as shown in the figure, and estimating

θy using geometry,

θy = arctan

(

δz

a

)

×
180◦

π
. (18)
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The deflection of the fixed-pinned beam at any value of x
can be derived by double integrating (10) as follows,

δz(x) =

∫ l

0

αMxdx−

∫ Lf

0

βV xdx

=
αl2

2
M −

βL2
f

2
V, (19)

where l = a + Lf . Note that the integration of βV x is

performed over the length Lf where the voltage is applied.

The deflection and moment at x = a for the fixed-pinned

boundary condition are [24],

δz(a) =
Fza

3(a− l)2(a+ 2l)

12cEIyl3
−

Fza
2(a− l)2

4cEIyl
,(20)

M(a) =
Fza(l − a)2(2l + a)

2l3
. (21)

Substituting (20) and (21) into (19), Fz can be expressed as

Fz =
18cEIyV d31l

3tpw (a+ l)

a (a− l)σ
, (22)

where

σ = −2wa3t3p − 4wa2lt3p + 6wal2t3p + 9Iyal
2 + 18Iyl

3.

From (20), the effective stiffness of the actuator beam at

x = a is

kz =
12cEIyl

3

a2(a− l)3(a+ 3l)
, (23)

Using (23) and ignoring the beams that are perpendicularly

aligned to those under studied, the total effective stiffness of

the stage is

Ke,δz = 10kz, (24)

and the deflection of the platform at x = a is

δz(a) =
Fe,δz

Ke,δz
=

10Fz

10kz
=

Fz

kz
. (25)

Substituting (25) into (18), θy is estimated to be 2.4 µrad/V.

The effective mass of the stage is estimated using the

Rayleigh’s principle [25],

me = ρA

∫

L

[

z (x)

zmax

]2

dx, (26)

where A is the cross-sectional area of the beam, z (x) is

the shape function (vibration amplitude) of the beam, and

zmax is the maximum displacement of the beam along the

Z-direction. The shape function for the fixed-pinned beam

for x > a, as shown in Fig. 3, is

z (x > a) =
Fza

12cEIyl3
(l − x)

2
(

3l2x− a2x− 2a2l
)

,

(27)

The maximum displacement for the case of a < 0.414l
is [24]

zmax =
Fza

(

l2 − a2
)3

3cEIy (3l2 − a2)
2
. (28)

Substituting (27) and (28) into (26), the effective mass for

the actuator beam is me = 0.4118ρALf . The total effective

mass is

Me = 10me +mp. (29)

TABLE II

PIEZOELECTRIC PROPERTIES FOR THE PZT-5A BIMORPH SHEET FROM

PIEZO SYSTEM INC.

Piezoelectric coefficient, C/m2 Relative permittivity, ε = εS/ε◦
e31 -10.92 ε11 916
e33 12.08 ε33 830
e15 12.29

1st res. 883.5 Hz 2nd res. 1960.7 Hz

Fig. 4. Finite-element simulated resonance frequencies of the monolithic
stage.

With the known effective stiffness (24) and mass (29), the

stage is estimated to rotate about the X/Y-axis at a resonance

frequency of 2407 Hz.

IV. FINITE-ELEMENT-ANALYSIS

A finite-element (FE) model of the bimorph planar stage

was constructed using ANSYS workbench. Displacement of

all four edges of the stage are fixed. The piezoelectricity of

the stage is modeled using the ANSYS Piezo and MEMS

Application Customization Toolkit (ACT) extension. The

piezoelectric properties for PZT-5A is listed in Table II. Each

piezoelectric layer is polarized outwards along its thickness

direction. The middle of the bimorph is grounded.

To obtain the displacement per unit voltage for δx/y/z and

θx/y along the X, Y and Z axes, +1 V and -1 V are applied

to the corresponding electrodes for each DOF as shown in

Fig. 1. The respective displacements are obtained. Table III

compares the simulated and analytical static gains of the

stage.

Resonance frequencies of the stage were simulated using

the modal analysis module of ANSYS. The first two modes

of the monolithic stage are shown in Fig. 4. The first

resonance frequency appears at 883.5 Hz, translating along

the Z-axis. The second and third mode is a rotational mode

about the X-/Y-axis, occurs at 1960.7 Hz. To search for the

lateral modes along the X and Y axes of the stage, the out-

of-plane motions along the Z-axis were constrained. The

X- and Y-axis lateral mode occurs at 21.26 kHz Simulated

resonance frequencies are listed in Table III together with

their analytical counterparts.

V. EXPERIMENTAL RESULTS

The experimental setup consists of a nanopositioner

mounted on a base as pictured in Fig. 5. The translational

motion in each axis is measured using MSA-3D interferome-

ter. Rotational motions about the X- and Y-axis are measured

using the Attocube interferometer. The Attocube rotational

measurement is performed by mounting a mirror on each end

Authorized licensed use limited to: University of Newcastle. Downloaded on May 25,2020 at 12:40:18 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5. Monolithic nanopositioner mounted on a base.

TABLE III

COMPARISON OF THE ANALYTICAL, FE-SIMULATED AND

EXPERIMENTAL RESULTS

Static gain

Analytical FEA Exp

X-Axis Translation (nm/V) 15.6 16.8 15.55
Y-Axis Translation (nm/V) 15.6 16.8 13.17
Z-Axis Translation (nm/V) 59.9 50 66.22
X-Axis Rotation (µrad/V) 2.4 2 1.5
Y-Axis Rotation (µrad/V) 2.4 2 2.2

Resonance frequency (Hz)

X/Y-Axis Translation 22071 21260 –
Z-Axis Translation 1082 883.5 845
X/Y-Axis Rotation 2407 1960.7 1850

of the platform. Measuring the vertical displacement on each

side, the rotation of the platform can be calculated from (18).

To evaluate the travel range, electrodes were driven with a

10-Hz sinusoidal voltage from −200 V to +200 V as shown

in Fig. 1. Note that +200 V is only 20% of the positive range

and was chosen conservatively to ensure a safe operating

range for the material. The measured translational motions

are 26.5 µm in the Z-axis, 6.22 µm in the X-axis and 5.27 µm

in the Y-axis. The rotational motion is 600 µrad and 884 µrad

about the X- and Y-axis respectively. Table III compares the

analytical, FE-simulated and measured static gains of the

monolithic stage. There are in close agreement to each other.

Fig. 6 shows the measured frequency responses of the

stage. The frequency responses of the translational motions

in the X- and Y-axis exhibits a relatively constant response

over a wide frequency range. However, the maximum useful

frequency is limited by the first resonance mode in the Z-

axis occurring at 845 Hz. The measured rotational resonance

mode for both θx and θy appears at 1850 Hz. The measured

resonance frequencies are in close agreement with that of the

FE simulations. The analytical resonances are approximately

22% larger than that of the experimental results. These

discrepancies are due to the one-dimensional beam model.

The discrepancy in the rotational mode are also due to the

unmodeled beam actuators that are perpendicularly aligned

to the axis of motion.
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Fig. 7. Block diagram of the decentralized controller.

VI. DECENTRALIZED CONTROL

The performance of the nanopositioner in closed-loop is

evaluated by implementing a decentralized control law. Here,

the device is used as a vertical nanopositioner with three

DOF motion in Z, θx and θy . For closed-loop control, a

decentralized integral controller, and a decentralized integral

and notch controller were implemented on a dSPACE-ds1103

board using Simulink coder. The vertical and rotational mo-

tions are measured using the three Attocube interferometers

as shown in Fig. 5. The block diagram of the control law is

shown in Fig. 7 where Ct is a diagonal integral controller,

Fn is a diagonal notch filter and G is the plant. The diagonal

controller can be written as

CN (s) = diag{CN (s)} =





CNz 0 0
0 CNθx 0
0 0 CNθy



 , (30)

where the transfer function of diagonal elements is given by

CN (s) = CtFn =

(

ki
s

)

s2 + 2ωnζns+ ω2
n

(s+ ωn)2
. (31)

The notch filters are tuned to the lowest resonance frequen-

cies of the corresponding diagonal frequency responses in

Fig. 6. For translation in the Z-axis, the notch filter is tuned

to 845 Hz and for rotations about the X- and Y-axis, the
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Fig. 8. Closed-loop performances of the decentralized integrator and
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filters are tuned to 1.85 kHz. The tracking performance of

a 10-Hz triangular reference in closed-loop is depicted in

Fig. 8. The controller with the combined integrator and notch

filter provides better tracking than that of the integrator. The

results also show a significant reduction in cross-coupling

motions. A multivariable control design based on model-

less inversion-based techniques is published alongside this

paper [26].

VII. CONCLUSIONS

This paper proposes a new ultra-thin, five-axis monolithic

nanopositioner fabricated from a bimorph sheet of piezo-

electric material. The proposed monolithic nanopositioner

has a X and Y translational range of 6.2 µm and 5.2 µm

respectively, a Z translational range of 26.5 µm, and a

rotational range of 600 µrad and 884 µrad about the X- and

Y-axis respectively. The Z resonance frequency appears at

845 Hz, and the rotational resonant mode appears at 1850 Hz.

A decentralized control strategy with combined integrator

and notch filter was implemented to track motions in Z, θx
and θy . The closed-loop system provides good tracking and

significantly reduces cross-coupling motions among the three

DOFs.

REFERENCES

[1] Andrew J Fleming and Yuen Kuan Yong. An ultrathin monolithic xy
nanopositioning stage constructed from a single sheet of piezoelectric
material. IEEE/ASME Transactions on Mechatronics, 22(6):2611–
2618, 2017.

[2] Y.K. Yong, S.O.R. Moheimani, B.J. Kenton, and K.K. Leang. Invited
review article: High-speed flexure-guided nanopositioning: Mechanical
design and control issues. Review of Scientific Instruments, 83(12),
2012.

[3] Y.K. Yong, S.S. Aphale, and S.O.R. Moheimani. Design, identification,
and control of a flexure-based xy stage for fast nanoscale positioning.
IEEE Transactions on Nanotechnology, 8(1):46–54, 2009.

[4] MS Rana, HR Pota, and IR Petersen. Performance of sinusoidal
scanning with mpc in afm imaging. IEEE/ASME Transactions on

Mechatronics, 20(1):73–83, 2015.

[5] Srinivasa M Salapaka and Murti V Salapaka. Scanning probe mi-
croscopy. IEEE control systems, 28(2):65–83, 2008.

[6] AJ Fleming, BJ Kenton, and KK Leang. Bridging the gap between
conventional and video-speed scanning probe microscopes. Ultrami-

croscopy, 110(9):1205–1214, 2010.
[7] Abu Sebastian, Angeliki Pantazi, Haris Pozidis, and Evangelos Eleft-

heriou. Nanopositioning for probe-based data storage [applications of
control]. IEEE Control Systems, 28(4), 2008.

[8] Sandipan Mishra, Joshua Coaplen, and Masavoshi Tomizuka. Preci-
sion positioning of wafer scanners segmented iterative learning control
for nonrepetitive disturbances [applications of control]. IEEE control

systems, 27(4):20–25, 2007.
[9] Antoine Ferreira and Constantinos Mavroidis. Virtual reality and

haptics for nanorobotics. IEEE robotics & automation magazine,
13(3):78–92, 2006.

[10] Zhi-Qiang Fan, Xiu-Wei Li, and Liu. Piezo-assisted in vitro fertiliza-
tion of mouse oocytes with spermatozoa retrieved from epididymides
stored at 4 degree c. Journal of Reproduction and Development, pages
0801250035–0801250035, 2007.

[11] Yuen K. Yong, Sachin P. Wadikhaye, and Andrew J. Fleming. High
speed single- and dual-stage vertical positioners. Review of Scientific

Instruments, 87(8):085104, aug 2016.
[12] Gerd Binnig and Douglas PE Smith. Single-tube three-dimensional

scanner for scanning tunneling microscopy. Review of Scientific

Instruments, 57(8):1688–1689, 1986.
[13] Johannes Maess, Andrew J Fleming, and Frank Allgöwer. Simulation
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