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Abstract— Photothermal excitation of the cantilever for dy-
namic atomic force microscopy (AFM) modes is an attractive
actuation method as it provides clean cantilever actuation
leading to well-defined frequency responses. Unlike conven-
tional piezo-acoustic excitation of the cantilever, it allows for
model-based quality (Q) factor control in order to increase
the cantilever tracking bandwidth for tapping-mode AFM or
to reduce resonant ringing for high-speed photothermal off-
resonance tapping (PORT) in ambient conditions. In this work,
we present system identification, controller design and experi-
mental results on controlling the Q factor of a photothermally
driven cantilever. The work is expected to lay the groundwork
for future implementations for high-speed PORT imaging in
ambient conditions.

Index Terms— Atomic Force Microscopy, Photothermal Ac-
tuation, Vibration Control, System Identification, Controller
Design

I. INTRODUCTION

Atomic force microscopy (AFM) [1] has significantly
enabled the steady growth of nanotechnology over the past
three decades. As a key instrument for visualizing the nano-
scale properties of a variety of samples, the AFM has pro-
duced images of strings of DNA, cells, proteins and polymers
[2] and demonstrated true atomic resolution [3]. At the core
of the instrument, a microcantilever forms the physical link
between the sample under investigation and the measurable
quantity. By scanning the cantilever with a sharp tip over the
surface of the sample and maintaining a constant setpoint
with a feedback controller, a three dimensional image of the
sample’s topography is obtained.

A number of operating modes have been demonstrated
over the years, which, depending on the type of cantilever
actuation, can be broadly classified in static (contact-mode)
and dynamic (resonance and off-resonance) techniques. The
earliest and most common form of operation is contact-mode
AFM (CM-AFM) [1] which can be employed for fast mea-
surements of hard samples, however it will damage soft and
biological samples and lead to wear and tear of the probe tip
[4]. This disadvantage arising from lateral friction forces was
overcome by operating the AFM in dynamic modes through
the excitation at or near the cantilever’s fundamental flexural
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resonance frequency. For operation in ambient conditions
and liquid environments, tapping-mode AFM [5], for which
the controller maintains a constant cantilever amplitude,
has established itself as the standard operating mode for
investigating biologically-relevant samples [6].

However, tapping-mode AFM in air is inherently slow,
pre-dominantly limited by the slow amplitude dynamics of
cantilever resulting from the high quality (Q) factor. As such,
high-speed experiments in order to study dynamic biological
processes with molecular resolution have only been obtained
in liquid environments [7]–[9] where the Q factor naturally
drops to very small values. Moreover, it was recently shown
that for very weakly bound biological molecules, high-speed
tapping-mode AFM does not provide gentle enough imaging
conditions to visualize the highly delicate assembly processes
[10]. Instead, AFM based on cycle-to-cycle feedback directly
from the tip-sample force [11] can provide the necessary low
force set points in order to observe these processes [10], [12],
[13].

In order to make full use of the potential of this imaging
mode, high-speed actuation of the cantilever away from
the resonance is required. In conventional approaches, this
is achieved by the z-stage driven by a piezoelectric stack
actuator which in turn usually has a relatively low bandwidth
[14]. In contrast, photothermal actuation of the cantilever
[15] has the potential to achieve several hundreds of kilohertz
of bandwidth in the vertical direction and is only limited by
the cantilever resonance frequency. In liquid environments,
this is hardly a problem as the resonance is heavily damped
by the surrounding medium. However, in ambient conditions,
the vertical bandwidth is limited by the high Q factor of the
cantilever which causes a significant transient response and
ringing after contact with the sample.

II. Q CONTROL OF MICROCANTILEVERS

Q control was originally introduced to modify the quality
factor of the fundamental mode of the cantilever [16], which
lead to a number of advances in tapping-mode AFM. By
actively damping the cantilever resonance, an increase in
scan speed is achieved [17]–[19] as a result of increasing
the cantilever tracking bandwidth which allows for larger z-
axis feedback controller gains.

A. Time-Delay Q Control

Active modification of the cantilever Q factor is realized
by velocity feedback. As most commercial AFM systems
only provide a position sensor to measure the cantilever
deflection, velocity at the resonance frequency has to be
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Fig. 1. (a) Experimentally obtained frequency response of a piezo-acoustically actuated cantilever with time-delay feedback controller for Q reduction on
the first mode. (b) Simulated frequency response of a multimode cantilever with time-delay feedback control showing instability on the second eigenmode
due to spillover.

approximated from the displacement signal. Since the dis-
placement signal is sinusoidal, a velocity estimate is obtained
by applying a phase-shift of −90◦ and a corresponding gain
to the displacement signal. This approach is most commonly
realized through a time-delay controller of the form [20]

K(s) = ge−Tds (1)

where g is the gain and Td = 90◦

360◦
1
f0

is the time-delay
as a function of the resonance frequency. This approach
remains an easy to implement solution for practitioners and
is by far the most widely used Q control approach reported
in literature. However, the time-delay approach is severely
limited as it comes with a number of disadvantages such as
the restriction to controlling a single mode [19], and non-
robust stability properties [21] leading to spill-over at higher
order eigenmodes [22]–[24].

In practice, most commercial AFM systems will utilize
a piezo-acoustic excitation at the base of the cantilever
leading to a frequency response as is shown in Fig. 1(a).
The numerous additional complex dynamics and higher
order modes from the mechanical mounting will inherently
limit the achievable controller performance of the time-delay
method. In this example, an initial Q factor of the first
mode of Q = 281 can only be reduced to Q∗ = 124 with
a gain of g = −7 before spill-over renders the cantilever
system unstable at the higher eigenmode. This phenomenon
is observable at the increased second mode Q factor due
to the control action on the first mode. Since the frequency
response of the time-delay controller exhibits a continuously
dropping phase, it may happen that at a higher (unmodeled)
eigenmode the phase is a πn multiple of −90◦. This in turn is
equivalent to a negative gain which leads to positive feedback
and in the worst case destabilizes the system as demonstrated
in Fig. 1(b).

B. Model-based Q Control

This problem can be overcome by using integrated actua-
tion, for instance via a piezoelectric layer which enables the
utilization of resonant controllers [24]. This approach allows
for the control of multiple eigenmodes in parallel in order to
enable imaging on higher eigenmodes [19] or to influence the
material contrast in bimodal AFM [25]. If additionally, the
optical beam deflection sensor is replaced by an integrated
sensor such as piezoelectric sensing [26]–[29], a collocated
system is obtained [30] and vibration control for reducing
the Q factor results in guaranteed robust stability properties
of the closed loop [31].

C. Contribution

Enabled by the clean actuation of the photothermal ex-
citation, we demonstrate model-based Q control in this
work to alleviate the problem of resonant ringing of the
cantilever after sample contact for high-speed photothermal
off-resonance tapping (PORT) [10]. In this approach, a Q
controller is designed to dampen the first eigenmode of the
cantilever without affecting the response of the cantilever
off resonance and at lower frequencies. The controller is
designed to be of low order to be suitable for implementation
on a field programmable analog array (FPAA).

III. PHOTOTHERMAL Q CONTROL

A. Experimental Setup

The experimental setup consists of a modified Horiba
XploRA Nano Raman spectrometer with an AJST-NT scan-
ning probe microscope. In order to enable photothermal
excitation, the Raman laser diode with a wavelength of
638 nm and an output power of 22mW was used as the
excitation laser. The output from this laser was amplitude
modulated via an acoustic optical modulator (AOM). A
10x objective lens was used to focus the modulated laser
beam to a diffraction limited spot (1µm) at the base of
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Fig. 2. Schematic setup of the photothermal excitation system.

the cantilever. As the detection laser has a wavelength of
1000 nm and the position sensitive photo detector (PSPD)
has an optical bandpass filter, interferences between the
excitation and detection systems are avoided. An overview
of the detection and excitation systems is shown in Fig. 2.

B. System Identification

The cantilevers investigated in this work are general
purpose tapping-mode cantilevers (Micromasch, HQ:NSC).
Frequency responses are obtained by performing a sinusoidal
frequency sweep of the amplitude modulation of the AOM
with a DC offset of 2.5V (signal range 0V − 5V ) and
measuring the response with a optical beam deflection sensor
demodulated using a lock-in amplifier (Zurich Instruments,
HF2LI). Examples of three different cantilevers are shown
in Fig. 3.

A common property of the photothermal actuation is a
low-pass roll-off because both, the temperature at the illu-
minated position, and the thermal diffusion length decrease
as the modulation frequency increases [32]. These dynamics
need to be taken into account for controller design. System
identification is performed from frequency domain data. The
measured frequency response data (FRD) along with a third
order (model 1) and fourth order model (model 2) are shown
in Fig. 4. Here, model 1 is chosen as a series connection of a
low-pass filter and a second order resonant transfer function
and is of the form

H(s) = F (s)G(s) =
s+ z1
s+ p1

αω2
0

s2 + ω0

Q
s+ ω2

0

(2)

where α, ω0, Q are the gain, resonance frequency and
quality factor of the resonance and zi, pi are the zeros and
poles of the filter F (s). From the model, the resonance
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Fig. 3. Measured frequency responses of three photothermally excited
cantilevers.
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Fig. 4. Measured frequency response of the photothermally excited
cantilever (NSC14 Cr Au 160) (black), first-order lowpass filter model with
one zero (blue) (2) and full fourth-order transfer function model (red).

frequency f0 = 128.5 kHz and quality factor Q = 290
are found for the NSC14 Cr Au 160 cantilever which is
considered in the remainder of this work. While a better fit is
obtained with a full fourth-order transfer function (Model 2),
it would yield to a higher order Q controller and is therefore
not considered in the following sections.

C. Controller Design: Observer-based Approach

The purpose of the Q controller is to add damping to the
resonance of the cantilever. This is achieved by increasing the
negative real part of the complex conjugate pole pair asso-
ciated with the first eigenmode while leaving the resonance
frequency unchanged. The poles of the open-loop system
sorted in ascending order are given by p = [p1, p2, p3] where

p2,3 =
−ω0

2Q
± jω0

√

1−
1

4Q2
. (3)

In order to add damping to the resonance, only the complex
conjugate pole-pair of the resonance p2,3 are shifted deeper
into the left half plane. The desired closed-loop poles are
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Fig. 5. Block diagram of (a) observer based stated feedback and (b)
equivalent feedback controller architecture.

calculated as p = [p1, rd + ℑ{p2}, rd + ℑ{p3}] where rd =
−ω0/(2Qd) and Qd is the desired Q factor.

If the system (2) is written in state-space form

Σ : ẋ = Ax+Bu

y = Cx+Du (4)

and the pair (A,B) is controllable, then there exists a
feedback matrix K such that u = −Kx + r assigns
arbitrary closed-loop poles to the system (4) [33]. However,
proportional feedback of the states requires that all states
are available for measurement and this is usually not the
case. Therefore, feedback from the estimated states using a
Luenberger observer as shown in the block diagram in Fig.
5(a) can be employed. The resulting system is a two-input /
one-output controller with inputs [u y] of the form

Σ̂ : ˙̂x = (A− LC)x̂+
[

B − LD L
]

[

u
y

]

u = −Kx̂+ r. (5)

Here K is chosen in the same manner as for full state
feedback and L is chosen such that the observer poles are
2 − 5 times faster than the closed-loop poles [34]. This
is to ensure that the estimation error converges to zero
faster than the plant dynamics without introducing excessive
measurement noise into the estimated states. Taking the
Laplace transform of (5) yields the equivalent single-input
/ single-output controller

Keq(s) =
U(s)

Y (s)
= −K (sI − (A− LC −BK))

−1
L. (6)

The resulting block diagram is shown in Fig. 5(b). A simula-
tion of the closed loop with the equivalent controller resulting
from observer-based state feedback is shown in Fig. 6. Here,
the first order low-pass filter model for the cantilever shown
in Fig. 4 is used and the desired Q factor is Qd = 10. The
resulting equivalent controller is simulated with the model
and the actual frequency response data (FRD). In both cases,
the Q factor is reduced from Q = 290 to Q∗ = 9. From
Fig. 6(b), it can be seen that the equivalent controller has a
complex-conjugate pole-pair at high frequencies correspond-
ing to observer dynamics originating from the controller
design.

D. Controller Design: Pole-placement Approach

The controller design using the observer-based approach
yields a third order controller with high-frequency dynamics
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Fig. 6. (a) Bode plot and (b) pole-zero map of open and closed loop using
observer-based state feedback and using the equivalent controller from (6).
The poles and zeros of (6) are also shown in (b) in black.
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Fig. 7. (a) Bode plot and (b) pole-zero map of open and closed loop
using direct polynomial pole placement. The poles and zeros of (10) are
also shown in (b) in black.

which are not possible to be implemented with a field pro-
grammable analog array (FPAA). However, pole placement
can be directly performed by working directly with the
estimated transfer function polynomials. In this approach,
a model and controller of the form

H0(s) =
B0(s)

A0(s)
=

bns
n + . . .+ b0

ansn + . . .+ a0

C(s) =
P (s)

L(s)
=

pn−1s
n−1 + . . .+ p0

ln−1sn−1 + . . .+ l0
(7)

are considered. If the denominator degree is given by n =
deg(A0(s)), then a controller with polynomial degrees np =
deg(P (s)) = n− 1 and nl = deg(L(s)) = n− 1 allows for
an arbitrary choice of a closed-loop polynomial of the form
[33]

Acl(s) = L(s)A0(s) + P (s)B0(s) (8)

where the degree of the closed-loop denominator polynomial
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Fig. 8. (a) Bode plot and (b) pole-zero map of open and closed loop using
H∞-norm minimization. The poles and zeros of (10) are also shown in (b)
in black.

is nc = 2n − 1. The controller polynomials are found by
solving the following equation
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where aci are the coefficient of the closed-loop polynomial
(8). For the given system, the degrees of the polynomials
calculate to n = 3, np = nl = 2, nc = 5 and hence the
controller has the following form

C(s) =
P (s)

L(s)
=

p2s
2 + p1s+ p0

l2s2 + l1s+ l0
. (10)

The desired polynomial is chosen in a similar fashion as
discussed in Section III-C by leaving the real pole unaltered
and placing the complex-conjugate pole pair deeper into the
left half plane.

The simulation results with the model and the FRD data
is shown in Fig. 7. The resulting Q factor of the closed-loop
FRD model is Q∗ = 13.8. This approach avoids the high-
frequency controller dynamics and yields a minimal con-
troller realization. However, calculation the matrix inverse
of (9) can be badly conditioned for highly resonant systems
like the cantilever.

E. Controller Design: H∞-Norm Optimization

Given a prototype controller of the form (10), controller
design to find the maximum damping Q controller can also
be stated as an optimization problem of the form

min
pi,zi

‖Gcl(jω)‖∞ (11)

AOM

Cantilever

FPAA

2.5V

HF2LI

K(s)

BiQuad

Fig. 9. Schematic experimental setup for photothermal Q control.
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Fig. 10. Experimental frequency responses of the open-loop photothermally
driven cantilever in closed-loop for various Q factors.

where the cost function is the H∞-norm of the closed-loop
system

‖Gcl(jω)‖∞ = max
ω

|Gcl(jω)| , (12)

which corresponds to the peak gain of the frequency response
(the resonance peak). The simulation results with the model
and the FRD data is shown in Fig. 8. The resulting Q factor
of the closed-loop FRD model is Q∗ = 4.8. Note, that in
order to achieve the lowest H∞-norm, this controller slightly
shifts the imaginary part of the eigenvalues as well (see Fig.
8(b)) which leads to a shifted resonance frequency.

IV. EXPERIMENTAL RESULTS

The photothermal Q controller of the form (10) was
implemented on a field programmable analog array (FPAA,
Anadigm AN231E04) using a single biquadratic filter with
transfer function

CFPAA(s) = GH

s2 + 2πfz
Qz

s+ (2πfz)
2

s2 +
2πfp
Qp

s+ (2πfp)2
. (13)

calculated from (10). The experimental layout is shown in
Fig. 9. The measured open-loop frequency response and
the measured closed-loop frequency responses are shown
in Fig. 10 for a NSC14 Cr Au 160 cantilever with slightly
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higher resonance frequency. The controller design routine is
based on the actual measured open-loop frequency response.
It can be seen that the Q factor is reduced by over an
order of magnitude from 290 to 24, resulting in approxi-
mately 17.4 dB of damping. The difference to the achieved
simulated damping can be attributed to additional phase
drop from the interface electronics and limitations in the
FPAA controller parametrization (each controller parameter
in (13) has a limited range of admissible values). These
limitations will be taken into account for future controller
design routines.

V. CONCLUSION

A first order low-pass filter model for the photothermal
excitation in series with a second order resonant cantilever
model is used for model-based Q controller design. The
general controller design methods including observer based
state feedback, direct polynomial pole placement, and H-
∞ norm minimization are discussed and simulations are
shown demonstrating significant damping. The resulting sec-
ond order controller is implemented on a single FPAA and
experimentally demonstrated to yield an order of magnitude
reduction in the Q factor. Future work will include a more
accurate modeling of the thermal low-pass behavior and a
robustness analysis of the Q control loop.
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