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Abstract— Nanomechanical devices have the potential for
practical applications as mass sensors. In microcantilever-
based sensing, resonance frequency shifts are tracked by a
phase-locked loop (PLL) in-order to monitor mass adsorption.
A major challenge in minimizing the mass detection limit
comes from the noise present in the system due to thermal,
sensor and oscillator noise. There is numerical difficulty in
simulating PLLs, as both low frequency phase estimates and
high frequency mixing products need to be captured resulting
in a stiff problem. By using linear system-theoretic modeling
an in-depth analysis of the system is able to be conducted
overcoming this issue. This provides insight into individual
noise source propagation, dominant noise sources and possible
ways to reduce their effects. The developed model is verified
in simulation against the non-linear PLL, with each achieving
low picogram sensitivity for a 100 Hz loop bandwidth and
realistically modeled noise sources.

I. INTRODUCTION

Microsensing technology is integral to various fields of

science and engineering. One such area is the implementation

of micromechanical and electromechanical resonators as ul-

trasensitive transducers [1]. These include microcantilevers,

flexural plates, quartz crystal microbalances and surface

acoustic wave devices [2]. In recent years, microcantilever-

based sensing technology has been used to address chal-

lenges in chemical [3] and biological sensing [4] including

the detection of volatile organic compounds [5] and gases.

To act as a sensor the cantilever must be coated with a

reagent that adsorbs selected molecules to its surface. This

process is known as functionalizing the cantilever. The func-

tionalizing site itself is typically a metal layer (such as gold

or aluminum) evaporated onto the cantilever [6]. Cantilever

functionalization techniques include inkjet printing [7], spray

coating [8], spin coating [9] and solution dipping [10]. The

first chemical sensing device of this kind was first realized

by measuring the static bending of a microcantilever caused

by surface stress from molecules adhering to its surface [11].

Resonance frequency changes are induced by either mass

loading [12] or changes in the cantilever spring constant [13],

which is detected by tracking the resonance frequency. The

equation relating the change in mass due to molecule adso-

prtion ∆m to the shift in resonance frequency is described

by [12]

∆m =
k

4π2n

(
1

f2
res1

− 1

f2
res2

)

, (1)
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where k denotes the spring constant of the cantilever, n is a

geometrical constant (n = 0.24 for rectangular cantilevers)

and fres1 and fres2 denote the resonance frequencies before

and after the frequency shift respectively. Since the resonance

frequency equation involves both mass and stiffness

fres =
1

2π

√

k

m
, (2)

in-order to reduce crosstalk between these properties the

sensing layer should be concentrated at the free end of the

cantilever [6]. Other factors which cause resonance frequency

shifts include adsorption-induced variation in the spring

constant [14] and drifting of ambient conditions such as

humidity and temperature [15]. To alleviate these issues and

increase selectivity, cantilever arrays can be used - achievable

with microscale sensing without excessive additional size,

cost and power.

To date the majority of microcantilever-based mass sens-

ing uses the optical beam deflection method [16]. How-

ever, this requires additional sensor equipment and exact

alignment which impose challenges in terms of the overall

size, accuracy and repeatability. By employing self-sensing

piezoelectric cantilevers [17], [18], these issues can be allevi-

ated. Recent developments into piezoelectric patch placement

optimization show that previous limitations such as actua-

tor/sensor feedthrough have been heavily mitigated [19].

II. MODELING AND ANALYSIS

A. Non-Linear Phase-Locked Loop

1) System Description: The block diagram of the non-

linear mass sensing PLL with thermal, sensor and oscillator

noise is shown in Fig. 1. As the resonance frequency changes

with mass adsorption in real-time, it will be related to the

difference between the initial voltage controlled oscilaltor

(VCO) bias frequency ωbias and the loop filter output uω .

Mass sensing is then achieved by relating this measurement

to equation (1). The microcantilever is modeled as a transfer

function relating an input force to an output displacement

G(s) =
αω2

0

s2 + ω0

Q s+ ω2
0

, (3)

where α = 1/k [m/N] is the DC-gain of the system, Q is the

quality factor and ω0 is the fundamental resonance frequency.

The non-linear nature of a PLL requires biasing around a

stable operating point. For this PLL system, ωbias ≈ ω0 to

ensure a phase-lock state will be achieved when the system

starts. The frequency range in which a PLL will lock is

typically limited by the overall loop bandwidth, hence this

bias is made as close as possible [20].
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Fig. 1. The non-linear PLL system for microcantilever-based mass sensing with additive white Gaussian thermal noise nt(t) and sensor noise ns(t), as
well as 1/f2 oscillator noise nosc(t).
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Fig. 2. Diagram of a noise process n(t) propagating through the phase
detector.

Since the VCO produces a sinewave at the fundamental

resonance frequency, the output of (3) undergoes a −90°

phase shift. As the two input signals to the phase detector

are constantly 90° apart, tracking the resonance frequency of

the microcantilever requires θref = 0. The loop filter F (s)
provides error regulation and attenuates the high-frequency

mixing products at 2ω0. For certain applications, F (s) can

be extended to higher orders however more complex stability

conditions will need to be found [20].

2) Non-Linearities: Non-linearities in the PLL system

are introduced through the sin(·) function in the VCO and

multiplication within the phase detector. According to the

sine small-angle approximation, sin(θ) ≈ θ when θ ≪ 1.

This approximation is valid to such a degree it can be taken

as absolute during steady-state [21], [20].

A multiplication operation occurs during the typical imple-

mentation of a phase detector. If an additive white Gaussian

noise is added during the multiplication step, as shown in

Fig. 2, then the output phase estimate θ̂ is described by

θ̂ =
AB

2
sin(2ωt)

︸ ︷︷ ︸

Mixing product

+
AB

2
(ω1 − ω2)t

︸ ︷︷ ︸

Phase estimate

+n(t) ·A cos(ω2t)
︸ ︷︷ ︸

Transposed n(t)

.

(4)

The non-linear operation of multiplying n(t) by a sinusoid

results in scaling of the noise density by 1/
√
2 [22]. For both

non-linear operations discussed, a whitening of the spectrum

is also going to occur [23].

B. Noise Sources in Microcantilever-based Mass Sensing

1) Cantilever Thermal Noise: The theoretical resolution

limit of a vibrating cantilever is most prominently limited by

thermal noise in the cantilever oscillation signal [24]. This

limit is given by the equipartition theorem, which states that

if a system is in thermal equilibrium, then the total energy

of each vibrational mode (potential plus kinetic energy) has

a mean value equal to 1/2kBT , where kB is the Boltzman

constant and T the absolute temperature [25]:

1

2
ki〈xi〉2 =

1

2
kBT. (5)

Here, xi is the displacement of the i-th mode of the cantilever

and ki is the modal stiffness. As with the optical beam de-

flection sensor, the thermal noise vibrations of the first mode

(variance of the cantilever deflections σt) when observed by

a piezoelectric sensor are given by [26], [18]

σ2
t = 0.8175

kBT

k
. (6)

The variance and the thermal deflection noise spectral density

Nt(f) in [m/Hz] are related by [27]

σ2
t =

∫
∞

0

N2
t (f)df =

∫
∞

0

N2
f |G(j2πf)|2df, (7)

where Nf is the thermal white force noise density [28] and

G(j2πf) is the cantilever transfer function (3). Solving the

integral for the first mode using (6), the thermal deflection

noise spectral density is obtained as [18], [28]

Nt(f) =

√
√
√
√0.8175

2kBT

kπf0Q

1

(1− f2

f2

0

)2 + f2

f2

0
Q2

. (8)

2) Sensor Noise: Traditionally, microcantilever-based

mass sensing has used the optical beam deflection (OBD)

method [16] to measure the cantilever vibrations, as shown

in Fig. 3(a). The sensor noise induced when using an optical

source can be described by a Lorenzian peak with a power

spectral density of [29]

Ns,OBD(f) =

√

2P 2
d

∆f
. (9)
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Fig. 3. Microcantilever beam deflection sensing methods.

Here Pd is the optical power received by the photodetector

and ∆f is the bandwidth of the photodetector. This spectral

density function is flat irrespective of the incident carrier

frequency ω [29]. For commercial OBD systems, the mea-

surement noise has a white noise spectral density in the

range of 100−1000 fm/
√
Hz [30], however it requires exact

alignment which poses additional challenges in terms of the

overall sensor size, accuracy and repeatability. By employing

self-sensing piezoelectric cantilevers [17], [18], [19], these

issues can be alleviated.

A schematic layout of a cantilever with integrated piezo-

electric actuators and sensors is shown in Fig. 3(b). A

guard trace prevents actuator sensor feedthrough between the

piezoelectric transducers.

The noise spectral density of a piezoelectric read-out

scheme is mostly dominated by noise from electronic com-

ponents within the piezoelectric charge amplifier and was

experimentally determined as Ns,PZT(f) = 700 fm/
√
Hz

[18]. From here onwards, Ns,PZT(f) will be simply referred

to as Ns(f).
While the method does not compare to the lowest noise

optical read-out systems to date, there is on-going research

into improvement. In particular, the piezoelectric deflection

sensitivity could be increased in-order to scale down the

electrical noise floor [18].

3) Oscillator Noise: The simplest abstraction of an os-

cillator is an RLC circuit, whose non-ideal resistance adds

white thermal noise to the system according to the Johnson-

Nyquist model [31]. Leeson’s model [32] is an empirical

expression built on this concept with several additional

features. It describes the normalized single-sideband (SSB)

noise spectral density of an oscillator as

L(∆ω) = 10 log

[

2FkBT
Pc

{

1 +
(

ω0

2Q∆ω

)2
}(

1 +
∆ω

1/f3

∆ω

)]

,

(10)

where Pc is the carrier signal power, F is an amplification

fitting parameter, Q is the oscillator quality factor and

∆ω1/f3 dictates the switch from flicker frequency (1/f3)

to flicker phase noise (1/f2). With respect to a simple RLC

θref F (s)

uω

Gφ(s)

n̂t(t)n̂osc(t) n̂s(t)

Fig. 4. Linear approximation of microcantilever-based mass sensing PLL.
The pink block diagrams represent changes from the non-linear PLL model.

model, there is an additional thermal noise floor dictated by

2FkBT/Pc as ∆ω → ∞ and a 1/f3 factor (∆ω1/f3 ) for

very high Q oscillators.

Leeson’s model (10) predicts that phase noise reduces

with increasing carrier power and Q factor. However, the

empirical amplification factor F has no precise analytical

definition and quite often an increased Q incidentally leads

to an increased F depending on the oscillator circuit [33].

In practice, extremely small offset ∆ω values in the phase

noise are considered flat around the carrier [34]. Given this,

a numerical approximation to generate oscillator noise is to

pass white noise through a band-pass filter [35]

H(s) =
(s/z1 + 1)

(s/p1 + 1)
. (11)

z1 ≪ 1 is chosen to create a purely 1/f2 roll-off in the

bandwidth of interest and p1 must be significantly larger than

the carrier frequency as this dictates when the thermal noise

floor begins. This gives the oscillator noise spectral density

as

Nosc(f) = Aosc

∣
∣H(j2πf)

∣
∣, (12)

where Aosc is an amplification fitting parameter similar to

F . A typical oscillator phase noise specification is between

−100 and −140 dBc/Hz at 100 Hz [36].

C. Linear Approximation

There is numerical difficulty in simulating PLLs, as both

low frequency phase estimates and high frequency mixing

products at 2ω0 need to be captured resulting in a stiff

system [20]. Fig. 4 shows a linearized model of the non-

linear PLL. This model has been developed based on linear

approximations so that noise analysis can be conducted using

linear-time invariant (LTI) system theory.

1) Transposed Thermal Noise: As the cantilever is as-

sumed to be in steady-state with a constant excitation at

resonance supplied by the VCO, the thermal phase noise

is related to the thermal displacement noise by

∫
∞

0

N2
f

∣
∣G(j2πf)

∣
∣
2
df =

∫
∞

0

(√
2
ω0

2Q
Nt(f0)

)2

|Gφ(j2πf)|2df. (13)

Where the phase dynamics are given by the first order

response

Gφ(s) =
2Q

ω0
×

ω0

2Q

s+ ω0

2Q

, (14)
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Fig. 5. (a) Thermal noise density, (b) sensor noise density, (c) oscillator noise density, (d) total noise density, and (e) total RMS noise for varying Q
factors and a filter bandwidth of 100 Hz.

here 2Q/ω0 is the gradient of the phase response of the

cantilever system (3) at resonance. Additionally, Nt(f0) are

the thermal deflections at resonance obtained by evaluat-

ing (8) at f = f0

Nt(f0) =

√

0.8175
2kBTQ

kπf0
. (15)

2) Transposing VCO Noise: In the non-linear PLL system

shown in Fig. 1, the 1/f2 phase noise directly adds to the

argument of the sine function within the VCO [20]. By

applying the sine double angle formula, it can be seen that the

phase noise will be modulated by cos(ω0t). This is reflected

in the linear model by modifying equation (11) to

Ĥ(s) =
1

2
(H(s+ jω0) +H(s− jω0)) . (16)

3) Transposing Sensor Noise: The sensor noise ns(t) is

additive white Gaussian noise that undergoes modulation by

a sinusoidal carrier as seen in Fig. 1. As pure white noise is

not physically possible, consider this noise process to have

a finite bandwidth in the order of 100 MHz. Due to the

difference in speed between the carrier and noise process,

the modulated spectrum will appear equivalent in the low

bandwidth of interest when comparing ns(t) before and after

multiplication [37]. However, as this process is the same as

that described in equation (4), a scaling of 1/
√
2 needs to

be accounted for during the transposing.

D. Linear System Noise Analysis

From Fig. 4, the effect of the transposed noise terms n̂(t)
on the frequency output uω can be found by the transfer

functions

Tuωn̂s
(s) =

Uω(s)

N̂s(s)
=

−F (s)

1 + F (s)G2(s)
, (17)

Tuωn̂t
(s) =

Uω(s)

N̂t(s)
=

−F (s)G2(s)

1 + F (s)G2(s)
, (18)

and

Tuωn̂osc
(s) =

Uω(s)

N̂osc(s)
=

−F (s)G2(s)

1 + F (s)G2(s)
. (19)

With knowledge of the sensitivity functions T (j2πf) and

noise densities N(f), the noise density from each noise

source on the frequency estimate can be derived

Nuωn̂s
(f) =

√
2Ns(f)

∣
∣Tuωn̂s

(j2πf)
∣
∣,

Nuωn̂t
(f) =

√
2
ω0

2Q
Nt(f0)

∣
∣Tuωn̂t

(j2πf)
∣
∣,

Nuωnosc
(f) = Nosc(f)

∣
∣Tuωnosc

(j2πf)
∣
∣.

(20)

The total noise density on the frequency output is found by

Nn(f) =

√

Nuωn̂s
(f)

2
+Nuωn̂t

(f)
2
+Nuωnosc

(f)
2
, (21)

allowing for the standard deviation (RMS value) of the

total noise appearing on the frequency estimate to be found

by [38]

σn =

√
∫

∞

0

Nn(f)2df. (22)
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Fig. 6. Comparison of total noise densities of the frequency estimate for the non-linear and linear mass sensing PLL with a loop filter bandwidth of
100 Hz. The simulation parameters are detailed in Section III-A.

In general, it is recommended to evaluate this integral

numerically rather than use standard approximation methods

based on the order of the sensitivity functions [38].

III. SIMULATION

A. Simulation Parameters

Simulations were conducted to compare the non-linear PLL

in Fig. 1 against the linear system-theoretic model in Fig. 4.

These microcantilever-based mass sensor models were sim-

ulated to assess their noise performance with additive white

Gaussian sensor, thermal and oscillator noise present. The

simulation parameters are: sampling rate Fs = 5 MHz,

cantilever fundamental resonance frequency ω0 = 2π50 ×
103 rad/s, stiffness k = 49 N/m, Q = 400 and F (s) is a

2nd-order RC filter.

The sensor noise density is chosen as N̂s(f) =
700 fm/

√
Hz, while the thermal noise density is N̂t(f0) =

830 fm/
√
Hz by evaluating equation (16). The phase noise

is shaped to be 1/f2 with −140 dBc/Hz at 100 Hz.

B. Linear Approximation

The linear model is investigated through simulation under

varying system conditions. In doing so, the cantilever Q
factor is varied with a fixed loop filter bandwidth of 100 Hz.

In Fig. 5(a−c), the individual noise densities of the

modeled thermal, sensor and oscillator noise are shown. The

combination of these individual noise densities can be seen

in Fig. 5(d−e) through the total noise density and RMS noise

respectively.

In Fig. 5(a), the DC thermal noise of the system can be

seen to increase with higher Q factors, in accordance with

equation (16). Although the DC thermal noise is raised, the

mechanical bandwidth of the cantilever is reduced as dictated

by ω0/2Q. This results in the total integrated noise from the

thermal noise being equal regardless of Q, as dictated by the

equipartition theorem (6), (7).

However, in Fig. 5(e), instead of the RMS noise remaining

constant it initially increases as a function of Q before

converging. This is because low Q values increase the

cantilever bandwidth. When this bandwidth exceeds the loop

filter, the perceived total RMS noise is reduced as it doesn’t

contain all of the thermal noise entering the system.

C. Minimum Mass Detection Limit

Fig. 6 compares the total noise density of the frequency es-

timate between the non-linear and linear PLL. Additionally,

the transfer function of each noise density described by (20)

is shown. As expected, the dominating noise contribution

comes from the cantilever thermal noise. As the frequency

increases, the sensor noise begins to dominate as the thermal

noise rolls off. The total integrated noise (RMS) of the

non-linear and linear simulations are 9.4 and 8.6 picoHz

respectively. By reformulating equation (1), we can write

σmass =

(
k

4π2n

)

σf , (23)

where σ denotes the RMS value. Based on the simulated fre-

quency resolution, for realistic noise source models there is a

theoretical minimum mass detection limit of approximately

50 picograms for a 100 Hz bandwidth system.

IV. CONCLUSION

A challenge when developing ultra-sensitive

microcantilever-based mass sensors is the noise present in

the system due to thermal, sensor and oscillator noise. A

linear model is developed to analyze these noise processes

in terms of how they propagate through the system, which

is most dominant and if there are any ways to reduce them.

By using a system-theoretic LTI approach, the stiff nature

of non-linear PLL simulations involving low and high

frequency signals was overcome.

The linear approximation of the mass sensor was inves-

tigated for several bandwidths and Q factors, where it was

demonstrated to become increasingly accurate for high Q
and closed-loop bandwidth systems. Here it was found that

cantilever thermal noise dominates the mass estimate.

The developed models minimum mass detection limit

was compared against the non-linear PLL in simulation. It

was verified that both systems could achieve a sensitivity

of approximately 50 picograms with a loop bandwidth of

100 Hz and realistically modeled noise sources.
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