A COMPARISON OF SCANNING METHODS AND THE VERTICAL
CONTROL IMPLICATIONS FOR SCANNING PROBE MICROSCOPY

Yik R. Teo, Yuen Yong, and Andrew J. Fleming

ABSTRACT

This article compares the imaging performance of non-traditional scanning patterns for scanning probe microscopy including sinusoidal raster, spiral, and Lissajous patterns. The metrics under consideration include the probe velocity, scanning frequency, and required sampling rate. The probe velocity is investigated in detail as this quantity is proportional to the required bandwidth of the vertical feedback loop and has a major impact on image quality. By considering a sample with an impulsive Fourier transform, the effect of scanning trajectories on imaging quality can be observed and quantified. The non-linear trajectories are found to spread the topography signal bandwidth which has important implications for both low and high-speed imaging. These effects are studied analytically and demonstrated experimentally with a periodic calibration grating.

Key Words: Scanning probe microscopy, scanning methods.

I. INTRODUCTION

Scanning probe microscopy (SPM) is a family of imaging methods that operate by scanning a sample with a physical probe [1]. The most popular forms of SPM are the Scanning Tunneling Microscope (STM) [2] and the Atomic Force Microscope (AFM) [3]. In an SPM, the sample is typically mounted on a two-axis positioner that moves in the lateral directions. The interactions between the probe and sample in the vertical direction are recorded and used to construct the image. The foremost factors limiting the image quality, resolution and speed of SPMs are the bandwidth of the lateral scanner and the closed-loop bandwidth of the vertical feedback system.

The bandwidth limitations of the lateral scanner are mainly due to the mechanical dynamics [4]. However, in recent years, a considerable improvement in the speed of SPMs has been achieved with the use of advanced control techniques, for example, feed-forward control [5], improved feedback control [6–10] and methods such as input shaping [11,12].

Further improvements in scanning speed have been achieved through the introduction of novel scanning trajectories. The traditional scanning method in SPMs is raster scanning, which involves driving the x-axis (fast axis) with a triangular trajectory and shifting the sample in steps or continuously in the y-axis (slow axis). Due to the low bandwidth and potentially resonant nature of the positioning stage, the harmonics may result in significant tracking error and undesirable vibration. Consequently, the frequency of triangular raster scanning is typically limited to 1–10% of the first resonance frequency of the positioner [13]. The triangular signal bandwidth can be reduced by smoothing the trajectory [11] but at the expense of linear scanning range. The primary advantages of raster scanning are the constant velocity and simple image reconstruction which is due to regularly sampled data appearing on a square grid.

Alternative scanning methods based on sinusoidal trajectories include sinusoidal raster, spiral, Lissajous and cycloid methods. Sinusoidal raster scanning involves driving the x-axis (fast axis) with a sinusoidal trajectory while shifting the sample in steps or continuously in the y-axis (slow axis) [14–16]. Spiral, Lissajous and cycloid scanning methods require sinusoidal trajectories in both the x and y axes. Spiral scanning was first proposed in [17] and has been well studied in the literature [18–23]. Similarly, the application of Lissajous scanning pattern in SPM can be found in [24–26]. The cycloid scan pattern involves a sinusoidal trajectory in one axis and a sinusoidal trajectory plus a ramp input in the other axis [27]. The major benefit of a sinusoidal trajectory is the single-tone frequency spectrum. As a result, the scan rate can be close to, or above, the first resonance frequency of the positioner. However, the drawbacks include non-uniform spatial sampling, a sinusoidal velo-
The sample topography $h(t)$ acts as an input disturbance on the feedback loop. When the tracking error is small, the control signal $u(t)$ estimates the sample topography $h(t)$ since $u(t)$ is proportional to height. [Color figure can be viewed at wileyonlinelibrary.com]

The imaging modes of scanning probe microscopes can be grouped by the type of contact that occurs, either constant contact, non-contact, or intermittent contact modes. Examples of constant contact modes include constant-force contact-mode and constant-height contact-mode. A typical vertical feedback loop for constant-force contact-mode is shown in Fig. 1a. An example of a control loop for constant-amplitude intermittent contact mode (tapping mode) [30], is shown in Fig. 1b. All imaging modes require a vertical feedback controller except constant height modes, which do not regulate the contact force and are therefore rarely used.

The bandwidth of the vertical feedback loop is crucial as the sample topography appears as a disturbance $h(t)$ which must be regulated. The vertical bandwidth can be increased by modifying the hardware, for example, by implementing a dual-stage scanner in the vertical axis [31] or by increasing the scanner resonance frequency [6,32]. An alternative method for improving imaging quality is to reduce the bandwidth of the topography signal $h(t)$, for example, by using a saw-tooth trajectory which reduces the velocity.

Contribution of this work. The contribution of this work is to investigate the relationship between the lateral scanning method and the bandwidth of the topography signal $h(t)$. In Section II, the popular scanning methods in the literature are compared in a uniform framework. In Section III, the relationships between the scan rate, imaging time, resolution and sampling frequency are discussed. Then in Section IV, the lateral control implications of each scanning method are discussed qualitatively. In Section V, the probe velocity of each scanning method is compared. Finally, the relationship between the image quality and vertical feedback bandwidth is described in Section VI.

II. SCANNING METHODS

In this section, the methods under consideration are described including: raster, sinusoidal raster, spiral and Lissajous scanning method. Analytical expressions for the scan rate, imaging time and sampling frequency are derived and compared. As an example, a $5 \times 5 \mu m$ scan with $1 \mu m$ resolution is considered so that the individual sampling points can be clearly observed. All of the scanning methods have a fixed imaging time of 3.6 s.

2.1 Raster scan

A traditional raster scan involves a triangular trajectory in the x-axis while shifting the sample position in steps or continuously in the y-axis. The resolution is the ratio of scan size and pixels per line (N). For a square image, the resolution in the x- and y-axis is

$$x_{res} = y_{res} = \frac{x_{size}}{N}.$$
where x_{size} is the image width. The raster period T_{raster} and scanning frequency f_{raster} is

$$T_{\text{raster}} = \frac{2(N - 1)}{f_s}, \quad f_{\text{raster}} = \frac{1}{T_{\text{raster}}}$$

where f_s is the sampling frequency. The total imaging time T_{end} is

$$T_{\text{end}} = \frac{N - 0.5}{f_{\text{raster}}}. \quad (1)$$

There are multiple methods for driving the y-axis (slow-axis), including a ramp, stairs and smooth stairs. The image and scan trajectories for each method are plotted in Fig. 2. The image is a $5 \times 5 \mu m$ scan with a $1 \mu m$ resolution and a fixed imaging time of 3.6 s. This requires a 1.25-Hz scan rate and 10-Hz sampling frequency.

In this work, the ramp method is considered as this is most suited to high speed imaging. The resulting image in Fig. 3a is a parallelogram with sides of equal length (equilateral), also known as a rhombus. The small skew angle is often considered to be negligible, which is

$$\theta = \arcsin \left(\frac{0.5}{N - 1} \right).$$

An advantage of driving the y-axis with a stair or smooth stair waveform is the precisely square image; however, these waveforms may complicate the control design in high-speed applications due to the required step changes.

2.2 Sinusoidal raster scan

In sinusoidal raster scanning, the triangular trajectory is replaced by a sinusoidal trajectory in the x-axis (fast axis) and the sample is shifted in steps or continuously in the y-axis (slow axis). The different sinusoidal raster methods are plotted in Fig. 4. Here, the ramp waveform is considered.

Due to the non-uniform sampling distance of a sinusoidal waveform, the resolution is defined as the furthest distance between two adjacent points,

$$x_{\text{res}} = \frac{(x_{\text{size}} - x_{\text{size}}/N)}{2} \sin \left(\frac{2\pi f_{\text{sin}}}{f_s} \right),$$

where N is the number of pixels per line and f_{sin} is the scanning frequency. If the desired resolution and scanning frequency is fixed, the minimum sampling frequency is

$$f_s = 2\pi f_{\text{sin}} \left[\arcsin \left(\frac{2}{N - 1} \right) \right]^{-1}. \quad (2)$$

The imaging time for a sinusoidal raster scan is

$$T_{\text{end}} = \frac{(N - 0.5)}{f_{\text{sin}}}. \quad (3)$$

Fig. 4a shows a $5 \times 5 \mu m$ scan with a fixed imaging time of 3.6 s and a resolution of $1 \mu m$. This requires a scanning frequency of 1.25 Hz and a sampling rate of 15 Hz.
2.3 Spiral scan

The x and y trajectories of a spiral scan consist of a sinusoidal and cosine reference of the same frequency but varying amplitude. The trajectories are

\begin{align*}
x(t) &= r(t) \cos(2\pi f_{\text{spiral}} t), \\
y(t) &= r(t) \sin(2\pi f_{\text{spiral}} t),
\end{align*}

where f_{spiral} is the scanning frequency and the radius $r(t)$ varies with time.

In this work, the constant angular velocity method (CAV) is considered as this has the advantage of a constant frequency [22]. The equation that generates a CAV spiral of pitch P at an angular velocity of ω is derived from the differential equation

\[
\frac{dr}{dt} = \frac{P \omega}{2\pi},
\]

where r is the instantaneous radius at time t. The solution of the equation above with $r = 0$ and $t = 0$ is

\[
r(t) = \frac{P \omega t}{2\pi},
\]

where the pitch P is

\[
P = \frac{\text{spiral radius} \times 2}{\text{number of curves} - 1}.
\]

The number of curves is the number of times the spiral curve crosses through the line $y = 0$. The pitch distance P defines the resolution. The imaging time is

\[
T_{\text{end}} = \frac{2\pi r_{\text{end}}}{P \omega},
\]

where r_{end} is the largest radius of the spiral.

An advantage of this method is that it involves tracking a single frequency sinusoid with a slowly varying amplitude. The image and scan trajectory of a spiral scan is illustrated in Fig. 5.

2.4 Lissajous scan

The Lissajous trajectory is achieved by driving the x and y axes with purely sinusoidal signals of different frequency, that is,

\begin{align*}
x(t) &= A_x \cos(2\pi f_x t), \\
y(t) &= A_y \cos(2\pi f_y t),
\end{align*}

The shape of the Lissajous pattern is dependent on the ratio f_x/f_y and the phase difference between the two sinusoids. If the phase difference between the x and y signals is zero, the frequency difference between f_x and f_y determines the period T in which the pattern evolves and repeats itself. T is defined as

\[
T = \frac{1}{|f_x - f_y|}.
\]
The ratio of x and y frequencies should be a rational number [24],

$$\frac{f_x}{f_y} = \frac{2M}{2M - 1},$$

(4)

where M is a positive integer. The path traversed during the first half period is symmetric with respect to the x-axis, hence, a square-shaped region can be fully scanned using a half-period Lissajous pattern.

The resolution of a Lissajous scanning pattern is considered to be the maximum distance between scan lines. The lowest resolution generally occurs in the center of the image, which is approximately [24],

$$l_{res} \approx \frac{\pi A_x A_y}{M \sqrt{A_x^2 + A_y^2}}.$$

The minimum imaging time is

$$T_{end} = \frac{M}{f_x} \approx \frac{\pi A_x A_y}{f_x l_{res} \sqrt{A_x^2 + A_y^2}}.$$

and the minimum sampling frequency is

$$f_s = 2(2M - 1)f_x.$$

If the desired resolution l_{res} is 1 μm, M is

$$M = \left\lceil \frac{\pi A_x A_y}{l_{res} \sqrt{A_x^2 + A_y^2}} \right\rceil = 5,$$

where the half brackets represent the ceiling function and $A_x = A_y = (x_{size} - x_{res})/2$. The scanning frequencies are

$$f_x = \frac{M}{T_{end}},$$

$$f_y = \frac{2M - 1}{2M}f_x.$$

For a 5μm scan with a 1μm resolution and a fixed imaging time of 3.6 s, the scan rates are $f_x = 1.39$ Hz and $f_y = 1.25$ Hz and the minimum sampling frequency is $f_s = 25$ Hz. The scan trajectory of the Lissajous method is plotted in Fig. 6.

III. SCANNING FREQUENCY, IMAGING TIME, RESOLUTION AND SAMPLING FREQUENCY

In this section, the required scanning and sampling frequency are related to the desired imaging time and resolution.

For a raster scan, the relationship between the scanning frequency and resolution is

$$f_{raster} = \frac{N - 0.5}{T_{end}} \approx \frac{N}{T_{end}}.$$

The relationship between the sampling frequency and resolution is

$$f_s = 2(N - 1)f_{raster} = \frac{2(N - 1)(N - 0.5)}{T_{end}}.$$

For a sinusoidal raster scan, the relationship between the scanning frequency and imaging time is identical to the raster scan, that is

$$f_{sin} = \frac{N - 0.5}{T_{end}} \approx \frac{N}{T_{end}}.$$

(5)

For a fixed imaging time, the scanning frequency for sinusoidal raster is similar to raster scanning. The relationship between the sampling frequency and resolution is

$$f_s = 2\pi f_{sin} \left[\arcsin \left(\frac{2}{N - 1} \right) \right]^{-1}.$$

For spiral scan, the radius r_{end} should encompass the square image.

$$r_{end} = \sqrt{x_{size}^2 + x_{size}^2} = \sqrt{2}x_{size}$$

(6)

The relationship between the scanning frequency and the resolution is

$$f_{spiral} = \frac{N}{\sqrt{2T_{end}}} \approx 0.7071f_{raster}.$$

This expression shows that the scanning frequency for a spiral scan is approximately 30% slower than the conventional raster scanning and sinusoidal raster scanning methods. The minimum sampling frequency and resolution is [27],

$$f_s = 4N f_{spiral} = \frac{4N^2}{\sqrt{2T_{end}}}.$$
Table I. Analytical expressions for the required scan rate and sampling frequency for a given imaging time and resolution.

<table>
<thead>
<tr>
<th>Scanning Method</th>
<th>Scanning Frequency</th>
<th>Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster</td>
<td>(\frac{N}{T_{\text{end}}})</td>
<td>(\frac{2(N-\frac{1}{2})(N-0.5)}{T_{\text{end}}})</td>
</tr>
<tr>
<td>Sinusoidal Raster</td>
<td>(\frac{N}{T_{\text{end}}})</td>
<td>(\frac{2\pi N}{T_{\text{end}}} \left(\frac{1}{\arcsin \left(\frac{2}{N-1} \right)} \right)^{-1})</td>
</tr>
<tr>
<td>Lissajous</td>
<td>(\left\lceil \frac{N\pi}{2\sqrt{2}} \right\rceil \frac{1}{T_{\text{end}}})</td>
<td>(\left(2 \left\lceil \frac{N\pi}{2\sqrt{2}} \right\rceil - 1 \right) \frac{N\pi}{2\sqrt{2}} \frac{2}{T_{\text{end}}})</td>
</tr>
<tr>
<td>Spiral</td>
<td>(\frac{N}{\sqrt{2T_{\text{end}}}})</td>
<td>(\frac{4N^2}{\sqrt{2T_{\text{end}}}})</td>
</tr>
</tbody>
</table>

Table II. A comparison of scanning frequencies and sampling frequencies for a 10μm scan with an imaging time of 1 s and 128 pixels-per-line.

<table>
<thead>
<tr>
<th>Scan Method</th>
<th>Scanning Frequency</th>
<th>Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster</td>
<td>127.5 Hz</td>
<td>32.38 kHz</td>
</tr>
<tr>
<td>Sinusoidal Raster</td>
<td>127.5 Hz</td>
<td>50.87 kHz</td>
</tr>
<tr>
<td>Lissajous</td>
<td>142.0 Hz</td>
<td>80.37 kHz</td>
</tr>
<tr>
<td>Spiral</td>
<td>90.1 Hz</td>
<td>46.34 kHz</td>
</tr>
</tbody>
</table>

Table III. Characteristics of Lateral Scanning Trajectories.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Raster Scan</th>
<th>Sinusoidal Scan</th>
<th>Spiral Scan</th>
<th>Lissajous Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Rate</td>
<td>(f_{\text{raster}})</td>
<td>(f_{\text{raster}})</td>
<td>0.707(f_{\text{raster}})</td>
<td>1.1(f_{\text{raster}})</td>
</tr>
<tr>
<td>Signal Bandwidth</td>
<td>10(f_{\text{raster}})</td>
<td>(f_{\text{raster}})</td>
<td>0.707(f_{\text{raster}})</td>
<td>1.1(f_{\text{raster}})</td>
</tr>
<tr>
<td>Suitable for scan near/above resonance</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Square Image</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Repetitive Reference</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Suitable for simple Internal Model Control</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Suitable for Repetitive Control</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For Lissajous scan, the relationship between the scanning frequency and resolution is

\[f_x = \frac{M}{T_{\text{end}}} \] \(\text{(7)} \)

where \(M \) is given by

\[M = \frac{\pi A_x A_y}{l_{\text{res}} \sqrt{A_x^2 + A_y^2}} = \left\lceil \frac{N\pi}{2\sqrt{2}} \right\rceil. \]

where \(A_x = A_y = A \approx \frac{x_{\text{size}}}{2} \). For a Lissajous scan, the scanning frequency in the x-axis \(f_x \) is always greater than the scanning frequency in the y-axis \(f_y \), see (4). Hence, the relationship between minimum sampling frequency and resolution is

\[f_x = 2(2M - 1) f_y = \left(2 \left\lceil \frac{N\pi}{2\sqrt{2}} \right\rceil - 1 \right) \frac{N\pi}{2\sqrt{2}} \frac{2}{T_{\text{end}}}. \]

To compare the required scanning frequency of the Lissajous method to raster scanning, the imaging times can be equated by substituting (3) into (7), resulting in

\[f_x = \frac{f_{\text{sin}}}{N - 0.5} M, \] \(\text{(8)} \)

where \(M \) can be written as

\[M = \left\lceil \frac{N\pi}{2\sqrt{2}} \right\rceil \geq \frac{N\pi}{2\sqrt{2}}. \]

This simplifies (8) to

\[f_x = \frac{f_{\text{sin}}}{N - 0.5} \frac{N\pi}{2\sqrt{2}}. \] \(\text{(9)} \)

If \(N \gg 0.5 \), Equation (9) simplifies to

\[f_x \approx \frac{\pi}{2\sqrt{2}}. \] \(\text{(10)} \)

© 2016 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd.
This expression shows that the scanning frequency for a Lissajous scan must be at least 11% higher than the conventional raster scanning and sinusoidal raster scanning methods.

Table I summarizes the required scanning and sampling frequency for each method. As an example, a 10µm scan is considered with an imaging time of 1 s and 128 pixels-per-line. The required scanning frequencies and sampling frequencies of each method are listed in Table II. The raster and sinusoidal raster scans have a scanning frequency of 127.5 Hz but the Lissajous scan is 11% faster and the spiral scan is 30% slower. In addition, raster scanning requires the lowest sampling frequency followed by spiral scan, sinusoidal raster and Lissajous scans.

IV. LATERAL CONTROL IMPLICATIONS

The lateral scanning system is typically controlled by the combination of feed-forward control [5] and feedback control [6–8]. Due to the low resonance frequency of the scanner, typically in the hundreds of hertz, the bandwidth is limited to the first resonance frequency of the system. In Table III, a summary of the scanning methods and their associated control implications are compared qualitatively.

In spiral scanning, the frequency of the modulating amplitude is much lower than the frequency of the sinusoidal reference. Therefore, the reference signal bandwidth is approximately the frequency of the sinusoidal reference, which is also the lowest frequency of the methods considered. The sinusoidal raster and Lissajous methods provide the next lowest reference signal bandwidth due to the tonal spectra. In comparison, the reference signal bandwidth of a triangular raster trajectory is approximately 10 times the scanning frequency when the first five harmonics are considered.

There are a number of cases where the nature of the scan trajectory can be exploited. For instance, periodic reference signals allow the use of methods such as Repetitive Control [33]. Repetitive control has proven to be effective in tracking triangular waveforms [34–38]. For sinusoidal trajectories, Internal Model Control (IMC) has a low complexity and provides excellent tracking performance for sinusoidal raster scanning, Lissajous scanning [24,26], and spiral scanning [39–41].

V. PROBE VELOCITY

The probe velocity has a significant impact on the imaging quality since many of the interaction forces are a function of velocity, for example, lateral forces and friction. These forces are preferably kept constant during a scan. The probe velocity also impacts the bandwidth of the topography $h(t)$ which appears as a disturbance in the vertical feedback loop, see Fig. 1a. To minimize imaging artefacts, the topography $h(t)$ must be within the bandwidth of the vertical feedback system. Therefore, it is important to understand the relationship between the lateral scanning velocity and vertical bandwidth. The maximum frequency in the topography signal $f_{h \max}$ is

$$f_{h \max} \approx \frac{v_{max}}{T_{profile}} \text{Hz}$$

where v_{max} is the maximum velocity (µm/s) and $T_{profile}$ is the period of the profile (µm/period). The reciprocal of the period of the profile is $f_{profile}$

$$f_{profile} = \frac{1}{T_{profile}} \text{(period/µm)}.$$

Table IV summarizes the analytical velocity expressions for each scanning method. As an example, the linear velocity for a $5 \times 5\mu m$ scan with parameters in Section II is plotted in Fig. 7. This figure illustrates the varying probe velocity associated with sinusoidal scanning methods.
In other words, the frequency is
process reveals the extent to which each method’s spread of
In the following, the maximum frequency and spectrum
where

© 2016 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd.

Table IV. Analytical expressions for the linear and maximum velocity.

<table>
<thead>
<tr>
<th>Scanning Method</th>
<th>Linear Velocity</th>
<th>Maximum Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster</td>
<td>(v(t) = 2(x_{\text{size}} - x_{\text{res}}) f_{\text{raster}})</td>
<td>(v_{\text{max}} = 2(x_{\text{size}} - x_{\text{res}}) f_{\text{raster}})</td>
</tr>
<tr>
<td>Sinusoidal Raster</td>
<td>(v(t) = \pi(x_{\text{size}} - x_{\text{res}}) / \sin(2\pi f_{\text{sin}} t))</td>
<td>(v_{\text{max}} = (x_{\text{size}} - x_{\text{res}}) \pi / f_{\text{sin}})</td>
</tr>
<tr>
<td>Spiral</td>
<td>(v(t) = \sqrt{v_x(t)^2 + v_y(t)^2}), where (\gamma = P o / 2\pi)</td>
<td>(v_{\text{max}} = (\text{max} {v(t)}){t=T{\text{end}}})</td>
</tr>
<tr>
<td>Lissajous</td>
<td>(v(t) = \sqrt{(x_{\text{size}} - x_{\text{res}})^2 \pi^2 (f_x^2 \sin^2 (2\pi f_x t)^2 + f_y^2 \sin^2 (2\pi f_y t)^2)})</td>
<td>(v_{\text{max}} = \sqrt{(x_{\text{size}} - x_{\text{res}})^2 \pi^2 (f_x^2 + f_y^2)})</td>
</tr>
</tbody>
</table>

VI. VERTICAL FEEDBACK BANDWIDTH

The closed-loop bandwidth of the vertical feedback system is a key specification in high-speed microscopy since the topography signal \(h(t) \) is effectively low-pass filtered by the complementary sensitivity function. If the topography signal contains frequency content above the closed-loop bandwidth, this information will be lost, introducing imaging artifacts. A varying magnitude and phase response in the frequency range of interest will also introduce imaging artifacts, however this may be compensated by post processing. Constant-height imaging does not require a high bandwidth vertical feedback loop. In this group of imaging modes, the contact force is regulated only by the probe and sample stiffness. Although this results in significantly higher contact forces, the vertical detection bandwidth is limited only by the probe and instrumentation dynamics.

In the remainder of this section, the topography signal bandwidth is derived as a function of the scanning trajectory. During this exercise, the following sinusoidal sample profile is considered

\[
h(x, y) = \sin(2\pi f_{\text{profile}} x) + \cos(2\pi f_{\text{profile}} y),
\]

where \(f_{\text{profile}} \) is the number of sample features per micrometer. It may be more convenient to consider the profile period, which is \(T_{\text{profile}} = 1 / f_{\text{profile}} \), measured in micrometers per feature. The topography and a 3D image of the profile is plotted in Fig. 8. Scanning this profile at a constant velocity \(v \) will result in a sinusoidal topography signal, for example, when \(y = 0 \) and \(x = vt \)

\[
h(t) = \sin(2\pi f_{\text{profile}} vt) + 1.
\]

In other words, the frequency is \(f_{\text{profile}} \times v \), or \(v / T_{\text{profile}} \).

In the following, the maximum frequency and spectrum of \(h(t) \) is derived for each of the scanning methods, this process reveals the extent to which each method ‘spreads’ or modulates the frequency content of the sample.
\[
\sin(p \sin(q)) = 2 \sum_{n=1}^{\infty} J_{2n-1}(p) \sin([2n-1]q),
\]

where \(J_{2n-1}(p)\) is the Bessel function of the first kind,

\[
J_{\alpha}(p) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m + \alpha + 1)} \left(\frac{n}{2} \right)^{2m+\alpha},
\]

where \(\Gamma(.)\) is the gamma function, a shifted generalization of the factorial function to non-integer values. The function (13) can be written as

\[
h(t) = 2 \sum_{n=1}^{\infty} J_{2n-1}(2\pi f_{\text{profile}}) \sin \left([2n-1]2\pi f_{\sin}t \right),
\]

The spectrum contains components at odd multiples of \(f_{\sin}\), i.e. \(f_{\sin}, 3f_{\sin}, 5f_{\sin}\). In addition, the magnitude at each frequency component is scaled by a Bessel function with a value influenced by \(f_{\text{profile}}\). Despite the complexity, the bandwidth of the spectrum can be estimated by considering the major frequency components that contribute to the total energy of the spectrum. This assumption is similar to Carson’s rule which is used in frequency modulation (FM) [43]. Alternatively, the maximum topography disturbance signal bandwidth can be approximated by the maximum velocity and the period of the sample,

\[
f_h^{\max} \approx v_{\max} \times f_{\text{profile}} \text{ Hz},
\]

where the expression for \(v_{\max}\) is described in Section V.

For spiral scans, recall that the trajectories in \(x\) and \(y\) are

\[
x(t) = r(t) \cos(2\pi f_{\text{spiral}}t) \quad y(t) = r(t) \sin(2\pi f_{\text{spiral}}t).
\]

The topography signal is found by substituting the trajectories into (11),

\[
h(t) = \sin \left(2\pi f_{\text{profile}}r(t) \cos(2\pi f_{\text{spiral}}t) \right) + \cos \left(2\pi f_{\text{profile}}r(t) \sin(2\pi f_{\text{spiral}}t) \right).
\]

Fig. 9. The frequency spectrum of the topography signal \(h(t)\).
[Color figure can be viewed at wileyonlinelibrary.com]

Fig. 10. Experimental set-up. [Color figure can be viewed at wileyonlinelibrary.com]

Table V. A comparison of the analytical and approximated topographic signal bandwidth.

<table>
<thead>
<tr>
<th>Scan Method</th>
<th>Estimated Bandwidth</th>
<th>Calculated Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster</td>
<td>16 Hz</td>
<td>18 Hz</td>
</tr>
<tr>
<td>Sinusoidal Raster</td>
<td>26 Hz</td>
<td>25 Hz</td>
</tr>
<tr>
<td>Lissajous</td>
<td>40 Hz</td>
<td>45 Hz</td>
</tr>
<tr>
<td>Spiral</td>
<td>105 Hz</td>
<td>97 Hz</td>
</tr>
</tbody>
</table>

© 2016 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd.
The topography signal is found by substituting the trajectories into (11),

\[h(t) = -2 \sum_{n=1}^{\infty} (-1)^n J_{2n-1}(p_1) \cos ([2n-1]q_1) + J_0(p_2) + 2 \sum_{n=1}^{\infty} (-1)^n J_{2n}(p_2) \cos (2nq_2) \]

(16)

where \(p_1 = 2\pi f_{\text{profile}} A_x \), \(q_1 = 2\pi f_y t \), \(p_2 = 2\pi f_{\text{profile}} A_y \), and \(q_2 = 2\pi f_y t \).

The findings above are illustrated by the example profile shown in Fig. 8. The image size is 5×5 μm with a resolution of 50 nm. The imaging time is chosen to be 60 s which results in a scanning frequency of 1.658 Hz for the raster and sinusoidal raster scans. The Lissajous scan rates are \(f_x = 1.833 \) Hz and \(f_y = 1.825 \) Hz. The spiral scan rate is 1.172 Hz. The topography signal spectra for each scanning method are plotted in Fig. 9. These plots were created by numerically simulating an entire scan and computing the power spectral density of \(h(t) \). The bandwidth of the spiral scan is the broadest, followed by the Lissajous scan due to the high probe velocities. Table V lists the frequency where 95% of the signal is contained below. As predicted analytically, the lowest bandwidth is achieved for raster scanning, followed by sinusoidal raster scanning, Lissajous scanning and spiral scanning. Despite having the lowest scanning frequency, spiral scanning requires a five times greater vertical bandwidth than raster scanning. Due to the significantly increased vertical bandwidth, spiral scanning is not considered in the following experimental examination.

6.2 Experimental results

In this section, the findings in Section 6.1 are validated experimentally. As pictured in Fig. 10, the experimental setup is a high-speed xy flexure-guided nanopositioner and Nanosurf EasyScan 2 AFM. The lateral scanner has a range of 25 μm by 25 μm and a resonance frequency of 2.7 kHz [4]. In the experiment, the x and y axes are controlled using an inverse controller with integral action. A closed-loop bandwidth of 680 Hz was achieved while maintaining a 10 dB gain margin. This bandwidth is sufficient to ensure that lateral positioning errors are negligible.

The vertical stage was implemented using a Nanosurf AFM with a z-axis range of 22 μm. The AFM images presented here are obtained in constant-force contact-mode. The PID controller was tuned to the manufacturer’s recommended values. The measured closed-loop frequency response of the vertical stage is shown in Fig. 11, which reveals a bandwidth of 45 Hz.
An NT-MDT TGG1 calibration grating is used to evaluate the images, see Fig. 12. The grating has a triangular profile with a height of 1.5 μm and a period of 3.0 μm. The topographies and 3D images of the sample were constructed by plotting the control signal $u(t)$ to the z-axis actuator versus the x and y position of the sample.

The topography, profile and 3D image of an 18 μm scan is plotted in Fig. 13. The reference image was recorded with a scan rate of 0.2 Hz to avoid any bandwidth related artefacts. The experimental results compare the quality of an 18μm scan with 128 pixels per line. The two imaging times were 128 s and 256 s with a sampling frequency of 400 Hz.

In Case 1, the imaging time is 256 s which requires a 0.5-Hz scan rate for the raster and sinusoidal raster methods. The Lissajous scan rates were $f_x = 0.5586$ Hz and $f_y = 0.5566$ Hz. The simulated and experimental topography spectra are plotted in Fig. 14a. The simulation was based on a triangular wave profile with a height of 1.5 μm and a period of 3 μm. It can be observed that a higher topography bandwidth is required for the sinusoidal raster and Lissajous scanning methods.

In Case 2, the imaging time is 128 s which requires a 1-Hz scan rate for the raster and sinusoidal raster methods. The Lissajous scan rates were $f_x = 1.1172$ Hz and $f_y = 1.1133$ Hz. The simulated and experimental topography spectra are plotted in Fig. 14b. These results show an identical trend to case 1; however, with the higher scan rates, an obvious smoothing artefact can be observed in the high velocity regions of the sinusoidal and Lissajous methods.

![Fig. 13](image-url)
VII. CONCLUSION

This article investigates the performance and control consequences of novel SPM scanning trajectories such as sinusoidal raster scanning, spiral scanning, and Lissajous scanning. These methods can significantly increase the maximum scan rate but at the expense of varying probe velocity and increased vertical bandwidth.

Of the sinusoidal methods, the spiral method is found to require the lowest scanning frequency and the sinusoidal raster method is found to have the lowest probe velocity for a given imaging time and resolution.

The lateral scanning trajectory also influences the bandwidth and spectrum of the topography signal used to construct the image. Since the vertical feedback system is often severely limited in bandwidth, it is desirable to minimize the topography signal bandwidth. Although the novel scanning methods improve the lateral performance, they also significantly increase the probe velocity and consequently, the bandwidth of the topography signal compared to traditional raster scanning.

Experimental imaging demonstrated a smoothing artefact associated with Lissajous scanning due to the higher probe velocity and topography bandwidth. Therefore, a trade-off exists between the lateral and vertical performance. The conclusion of this investigation...
is that traditional raster scanning or a variant should be used if the scanning frequency is well within the bandwidth of the lateral scanner. In high-speed applications where a sinusoidal method is required, the sinusoidal raster method will require the lowest sampling frequency, probe velocity, and topography bandwidth compared to the other methods considered.

REFERENCES

25. Tuma, T., J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning

Yik R. Teo graduated from The University of Newcastle, Australia (Callaghan campus) with a Bachelor of Electrical Engineering (1st Class Honors) in 2010 and a Master of Philosophy in Mechanical Engineering in 2013. He is currently pursuing his Ph.D. under the supervision of Dr. Andrew J Fleming at the Precision Mechatronics Lab located at The University of Newcastle, Australia. His research includes high-precision positioning, scanning probe microscopy, and nano-fabrication. Academic awards include the Glenn and Ken Moss Research Higher Degree Award, Australian Postgraduate Award and the Vice-Chancellor Award in Outstanding Research Candidate.

Andrew J. Fleming graduated from The University of Newcastle, Australia (Callaghan campus) with a Bachelor of Electrical Engineering in 2000 and Ph.D in 2004. Dr. Fleming is presently an Australian Research Council Future Fellow and Director of the Precision Mechatronics Lab at The University of Newcastle, Australia. His research interests include biomedical devices, lithography, nano-positioning, and scanning probe microscopy. Dr. Fleming’s research...
awards include the IEEE Transactions on Control Systems Technology Outstanding Paper Award and The University of Newcastle Researcher of the Year Award. He is the co-author of three books and more than 170 Journal and Conference articles. Dr. Fleming is the inventor of several patent applications, and in 2012 he received the Newcastle Innovation Rising Star Award for Excellence in Industrial Engagement.

Yuen Kuan Yong received the B.Eng. degree (1st Class Hons.) in mechatronic engineering and the Ph.D. degree in mechanical engineering from The University of Adelaide, Australia, in 2001 and 2007, respectively. She is currently an Australian Research Council DECRA Fellow with the School of Electrical Engineering and Computer Science, The University of Newcastle, Australia. Her research interests include the design and control of nanopositioning systems, high-speed atomic force microscopy, finite-element analysis of smart materials and structures, sensing and actuation, and design and control of miniature robots. Dr. Yong is a recipient of the 2016 and 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) Best Conference Paper Finalist Award, The University of Newcastle Vice-Chancellor’s Awards for Research Excellence and the Pro Vice-Chancellor’s Award for Excellence in Research Performance. She is an Associate Editor for Frontiers in Mechanical Engineering (specialty section Mechatronics) and the International Journal of Advanced Robotic Systems. She is also a steering committee member for the 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS).