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IMPROVING ROBUSTNESS FILTER BANDWIDTH IN REPETITIVE
CONTROL BY CONSIDERING MODEL MISMATCH

Arnfinn A. Eielsen, Yik R. Teo, and Andrew J. Fleming

ABSTRACT

Repetitive control (RC) is used to track and reject periodic signals by including a model of a periodic signal in
the feedback path. The performance of RC can be improved by including an inverse plant response filter, but due to
modeling uncertainty at high frequencies, a low-pass robustness filter is also required to limit the bandwidth of the
signal model and ensure stability. The design of robustness filters is presently ad-hoc, which may result in excessively
conservative performance. This article proposes a new automatic method for designing the robustness filter based on
convex optimization and an uncertainty model. Experimental results on a nanopositioning system demonstrate that the
proposed method outperforms the traditional brick-wall filter approach.
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I. INTRODUCTION

Repetitive control (RC) is a method suited to ref-
erence tracking and rejection of periodic signals [1].
The method is based on the internal model principle
[2] where an exogenous signal (a reference or distur-
bance) can be nulled in the error signal if a signal model
is contained in the feedback path. RC was developed
to reject the periodic disturbances that arise in power
supply control [3,4], but has since been used for machin-
ing [5], precision positioning [6–8], optical drives [9–11],
electro-hydraulics [12], power-converters [13], and scan-
ning probe microscopy [14–16].

Fig. 1 illustrates the signal model used in RC for
periodic signals of period L. This implementation is com-
putationally efficient and numerically stable as the model
consists of only positive feedback around a time-delay.
The corresponding transfer function is an infinite num-
ber of marginally stable poles with infinite gain at the
harmonics of the periodic reference.

The most common implementation of discrete-time
RC was first proposed in [17], where the plant dynamics
are inverted using the zero-phase tracking error con-
trol (ZPETC) filter in order to improve the RC per-
formance. In principle, an inverse plant response filter
(IPRF) should provide a signal model bandwidth up
to the Nyquist-frequency. However, the ZPETC filter
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Fig. 1. A time-delay with positive feedback with the
appropriate initial function can model any periodic
signal [1].

relies on an accurately identified infinite impulse response
(IIR) model, which is not always possible. Furthermore,
non-minimum phase zeros cannot be inverted; hence the
magnitude response of the ZPETC inverse can be inac-
curate.

As an alternative to an IIR filter, a finite impulse
response (FIR) filter can be used for the IPRF. Com-
pared to a ZPETC inverse, an FIR filter does not require
an explicit model structure and can alleviate the prob-
lems due to non-minimum phase zeros. However, FIR
filters can be more computationally demanding than IIR
filters. The IPRF as an FIR filter [18,19] can be found
using frequency domain optimization [20]. The fore-
most difficulties with this approach are the ad-hoc design
procedure and non-optimal performance. For example,
an error weighting function must be chosen to syn-
thesize a filter which ensures closed-loop stability. An
alternative method presented in [8,21] is a more direct
method for IPRF synthesis which uses the inverse dis-
crete Fourier transform (IDFT) of the inverse empiri-
cal transfer-function estimate (ETFE). This method is
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equivalent to the frequency sampling method for FIR
filter synthesis [22].

The performance and stability of RC depends on the
accuracy of the IPRF, regardless of whether the imple-
mentation is an IIR or FIR filter. The robustness and
stability of the closed-loop system is related to the magni-
tude of modeling errors. A simple method for achieving
robustness is to limit the bandwidth using a low-pass fil-
ter [1,23–27], or truncating the number of poles in the
signal model [28]. A low-pass robustness filter [24,25]
improves the stability margin at higher frequencies, where
the plant mismatch is greatest.

In this article, a new method is proposed for syn-
thesizing a robustness filter based on the magnitude of
modeling uncertainty. This approach is shown to be less
conservative than present methods and is demonstrated
to improve the tracking performance of an experimental
nanopositioning system.

II. DISCRETE-TIME REPETITIVE CONTROL

Fig. 2 shows a block diagram for a general RC
scheme applied to a plant G(z−1). The filters H1(z−1) and
H2(z−1) are used to produce a bandwidth-limited signal
generator. The filter H1(z−1) is known as the robustness
filter [24,25]. If H1(z−1) and H2(z−1) have linear phase,
and therefore constant group delay, then a group delay
of L will produce poles at ± j2𝜋n∕L, n ∈ N0, where N0
denotes the set of natural numbers including zero. Sym-
metric FIR filters have a linear phase response; which is
why, ideally, H1(z−1) and H2(z−1) are chosen to be such
filters. The magnitude response of H1(z−1) and H2(z−1)
can then be used to limit the closed-loop bandwidth. The
IPRF H3(z−1) can be implemented as either an IIR or
FIR filter.

In Fig. 2 the RC scheme can be seen as equivalent
to the control law

CRC(z−1) =
H1(z−1)H3(z−1)

1 − H1(z−1)H2(z−1)
. (1)

Assuming that the reference signal period is an inte-
ger multiple of the sampling time Ts, then the product of
H1(z−1)H2(z−1) in the denominator has to contain a delay
of z−N , where

N = L∕Ts , (2)

to satisfy the internal model principle.
The closed-loop sensitivity function is

S(z−1) = E(z−1)
R(z−1)

,

=
1 − H1(z−1)H2(z−1)

1 − H1(z−1)
(
H2(z−1) − H3(z−1)G(z−1)

) ,
(3)

which can be rearranged to the form shown in Fig. 3.
The stability of the RC system is determined by the
denominator of (3), which will provide stability if the
loop transfer-function in Fig. 3 satisfies the small-gain
theorem [24,25]. Therefore, the system is stable if‖‖‖H1(z−1)

(
H2(z−1) − H3(z−1)G(z−1)

)‖‖‖∞ < 1 , (4)

assuming H1(z−1) and H2(z−1) are stable. The stability
condition can be split into two conditions:‖‖‖H1(z−1)‖‖‖∞ ≤ 1 , (5)

and ‖‖‖H2(z−1) − H3(z−1)G(z−1)‖‖‖∞ < 1 . (6)

Fig. 2. Block diagram for a general RC system.

Fig. 3. Equivalent description of sensitivity function.
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III. THE INVERSE PLANT RESPONSE
FILTER

The IPRF can be implemented by a model-less
FIR filter [8,21]. This method relies on an empirical
transfer-function estimate (ETFE) [29] of the plant.
The frequency sampling method for filter synthesis and
Welch’s method for estimating the ETFE are described in
the following subsections.

3.1 Synthesizing the inverse plant response filter

In terms of the frequency samples k ∈ [0,M − 1]
∩N0, the ETFE of the plant is denoted Ĝ(k), and its
inverse is denoted Ĝ−1(k). The IPRF H3(z) is an FIR filter
that can be found by taking the inverse discrete Fourier
transform (IDFT) of Ĝ−1(k). This method is known as
the frequency-sampling method for FIR filter synthesis
[22]. The unit impulse response gi(n) of the inverse of the
ETFE Ĝ−1(k) is

gi(n) =
1

M

M−1∑
k=0

Ĝ−1(k)ej 2𝜋kn
M , (7)

where n ∈ [0,M − 1] ∩ N0. The IDFT is found in MAT-
LAB using the function ifft. The FIR filter is then
expressed in the z-domain as

F(z−1) = gi(0) + gi(1)z−1 +…+ gi(M − 1)z−M+1

=
M−1∑
n=0

gi(n)z−n .

(8)

The frequency-sampling method results in a unit
impulse response which has been convoluted with a rect-
angular window of the same length in the frequency
domain. The frequency response of F(z−1) is therefore
affected by the large side-lobes of the rectangular win-
dow. As a result, the modeling error of F(z−1) is large
between the frequency samples. This can be alleviated
by the use of a window function with smaller side-lobes,
which effectively smooths the frequency response of
F(z−1).

A windowed FIR filter h̃(n) is created from an FIR
filter h(n) as

h̃(n) = w(n)h(n) (9)

where w(n) is a window function that is non-zero only for
n ∈ [0,M−1]∩N0. The frequency-domain representation

of the window function W (k) is

W (k) =
M−1∑
n=0

w(n − M∕2)e−j 2𝜋kn
M

=

[
M−1∑
n=0

w(n)e−j 2𝜋kn
M

]
e−j 2𝜋k

M
M
2 ,

(10)

where the term e−j(2𝜋k∕M)(M∕2) comes from the fact that
the rectangular window is not centered around n = 0,
but is time-shifted to be centered around n = M∕2. This
phase term will cause distortion of h(n), unless h(n) is also
phase-shifted to compensate. The unit impulse response
gi(n) is therefore phase-shifted before windowing. Due
to the circular shift property of the discrete Fourier
transform (DFT), this can be done by rearranging gi(n)
such that

ḡi(n) =

{
gi (n + M∕2) , n = 0, 1,… ,

M
2
− 1

gi (n − M∕2) , n = M
2
,

M
2
+ 1,… ,M − 1

(11)

for the case when M is even. The inverse response is then
represented by the FIR filter

F̄(z−1) =
M−1∑
n=0

ḡi(n)z−n = z−M∕2F(z−1) (12)

which is F(z−1) delayed by M∕2 steps. Applying the
window w(n) to the time-shifted impulse response ḡi(n),

g̃i(n) = w(n)ḡi(n) , (13)

the filter

F̃(z−1) = W (z−1) ∗
[
z−M∕2F(z−1)

]
(14)

is obtained, and H3(z−1) = F̃(z−1) is used in (1).
For the implementation, M = N, assuming N to be

even, and the stability condition given in (6) is simplified
by choosing

H2(z−1) = z−N∕2 , (15)

since |H2(z−1)| = 1, which results in

‖‖‖z−N∕2 − z−N∕2 [F(z−1) ∗ W (z−1)
]

G(z−1)‖‖‖∞
= ‖‖‖1 −

[
W (z−1) ∗ F(z−1)

]
G(z−1)‖‖‖∞ < 1 ,

(16)

where
[
W (z−1) ∗ F(z−1)

]
G(z−1) ≈ 1 if the FIR filter

inverse is accurate.
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3.2 Empirical transfer-function estimate

To obtain an accurate empirical transfer-function
estimate (ETFE), several methods can be used, including
periodic averaging, and Welch’s averaged periodogram
[21,29].

Welch’s method [30] is one of the most common
methods for obtaining an ETFE for RC [18,19,31]. The
plant output data is usually generated using Gaussian
white-noise excitation, although more informative input
signals can be generated by experiment design, if prior
information about the plant is known [29,32,33]. The
ETFE of the plant Ĝ(k), and its inverse Ĝ−1(k), are found
as the quotient of the cross power spectral density esti-
mate of the input and the measured output Pyu(k), and
the power spectral density estimate of the input Puu(k),
i.e.,

Ĝ(k) =
Pyu(k)
Puu(k)

, and Ĝ−1(k) =
Puu(k)
Pyu(k)

.

In Welch’s method, the time-series data is divided
into windowed segments, with an option to use overlap-
ping segments. Then, a modified periodogram of each
segment is computed and the results are averaged [30].
Welch’s method for generating an ETFE corresponds
to the function tfestimate in MATLAB. One of the
advantages of Welch’s method is the flexibility in terms
of the number of frequency samples and excitation signal
used.

IV. THE ROBUSTNESS FILTER

The performance and stability of RC depends on
the accuracy of the IPRF H3(z−1), which typically deteri-
orates at higher frequencies. The stability and robustness
of the system is improved by limiting the RC gain by way
of the robustness filter H1(z−1) [25]. This is commonly
done using a low-pass filter, increasing the attenuation
at higher frequencies, thus reducing the bandwidth [24].
In this Section, a novel method for synthesizing an FIR
robustness filter is presented.

4.1 Synthesizing the robustness filter

There are two requirements for the robustness filter.
The product of the filters H1(z−1) and H2(z−1) should pro-
duce a delay of N, and the stability condition (5) must be
met. Linear phase is ensured by using a symmetric FIR
filter. The required delay in (2) is ensured by using a filter
with 2P + 1 taps, with

P = N∕2 , (17)

assuming N is even. This filter will have P + 1 unique
parameters. In addition, a desired magnitude response||H1(𝜔)|| is specified as part of the control law design. By
pre-multiplying the filter by zP, H1(z−1) can be expressed
as the non-causal, zero-phase filter

H̄1(z−1) = h1(P)zP + h1(P − 1)zP−1 +…
+ h1(0) +… + h1(P − 1)z−P+1 + h1(P)z−P .

(18)

Since z = ej𝜔 and ejn𝜔 + e−jn𝜔 = 2 cos(n𝜔), the frequency
response is real-valued and found as

H̄1(𝜔) = h1(0) + 2
P∑

n=1

cos(n𝜔)h1(n) = ||H1(𝜔)|| . (19)

Consider mf ≥ P+1 frequency samples 𝜔k ∈ [0, 𝜋], since
the spectrum of ||H1(𝜔)|| is symmetric, then the response
can be expressed as

𝐀H̄1
= 𝛀𝚯h1

(20)

where

𝐀H̄1
=
[ |H1(𝜔1)| · · · |H1(𝜔mf

)| ]T
, (21)

𝛀 =
⎡⎢⎢⎣
𝛀1
⋮

𝛀mf

⎤⎥⎥⎦ , (22)

𝛀i =
[

1 2 cos(𝜔i) · · · 2 cos(P𝜔i)
]
, (23)

and

𝚯h1
=
[

h1(0) h1(1) · · · h1(P)
]T

. (24)

The coefficients that approximate the desired magnitude
response for the robustness filter ||H1(𝜔)||, that ensure a
linear-phase and |H1(𝜔)| ≤ 1, can be found solving the
convex optimization problem [34]

minimize
Θ

‖𝛀𝚯h1
− 𝐀H̄1

‖2

s.t. 𝛀𝚯h1
≤ 𝟏,

(25)

where 𝟏 denotes a column vector of ones, and
time-shifting the resulting filter

H1(z−1) = z−PH̄1(z−1) . (26)

When solving this problem, a sufficient number
of frequency samples are necessary to avoid an
under-determined problem. To improve the inter-sample
response of the resulting filter [20,35], a higher number
of samples is usually required, hence

mf = 10 (P + 1)

was used for the results in this paper.
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4.2 Brick-wall low-pass filter approach

A linear-phase low-pass filter approximating a
brick-wall frequency response is the most common
method of designing the robustness filter H1(z−1)
[1,23–27]. Approximating the ideal step-function using
an FIR filter typically introduces pass-band ripple
[20,22], which causes the stability condition (5) to be vio-
lated. One way to practically eliminate pass-band ripple
is to approximate the brick-wall frequency response using
the magnitude response of a high-order low-pass Butter-
worth filter. The roll-off rate of the Butterworth is also
lower than more direct step-function approximations,
which should lead to a less severe bandwidth limitation.
The bandwidth of the filter is chosen to be the frequency
domain where |H3(z−1)Ĝ(z−1)| ≈ 1, where Ĝ(z−1) is the
ETFE of the plant G(z−1).

4.3 Mismatch approach

When evaluating the mismatch between the mea-
sured response and the IPRF, it is often apparent that
a brick-wall filter is more conservative than necessary.
By considering the mismatch when synthesizing the
robustness filter H1(z−1), a less conservative filter can be
obtained. Here, the robustness filter problem is solved
as an optimization problem taking the measured uncer-
tainty, or model mismatch, into consideration.

The stability criterion (4) can be written:|||H1(z−1)
(
H2(z−1) − H3(z−1)G(z−1)

)||| ≤ 1 . (27)

If the model mismatch is denoted as

𝛿(z−1) = zN∕2H3(z−1)G(z−1) (28)

the stability criterion is

|||H1(z−1)
(
z−N∕2 − z−N∕2𝛿(z−1)

)|||
= |||H1(z−1)

(
1 − 𝛿(z−1)

)||| = |||H1(z−1)𝜐(z−1)||| ≤ 1 ,

(29)

where the mismatch is expressed by way of the multiplica-
tive uncertainty weight

𝜐(𝜔) = 𝛿(𝜔) − 1 . (30)

A design criterion for H1(z−1) can then be found as:

||H1(𝜔)|| ≤ 1|𝜐(𝜔)| (31)

There are two main contributors to model mis-
match. First, assume a perfect ETFE Ĝ(k) = G(k) and

corresponding inverse FIR filter F(z−1); the required win-
dowing W (z−1) introduces a modeling error in the IPRF
H3(z−1) = z−N∕2

[
W (z−1) ∗ F(z−1)

]
since[

W (z−1) ∗ F(z−1)
]

G(z−1) ≠ 1 .

Second, the ETFE can not be expected to be perfectly
accurate, due to non-linearity, noise, and other factors
influencing the dynamics of the actual system.

4.3.1 Measuring the Model Mismatch

The method adopted here in order to measure the
model uncertainty, is to produce a more accurate, higher
resolution ETFE Ĝm(k) than the EFTE Ĝ(k) used to
generate the IPRF, and then compute the measured
uncertainty weight

𝜐m(k) =
[
W (k) ∗ F(k)

]
Ĝm(k) − 1 , (32)

that can be used to generate the uncertainty bound,
described in Sec. 4.4.

The reason for using a higher frequency resolution
ETFE is that in the spectral density estimates used to
generate the ETFE, the frequency bins represent aver-
age power, and hence the power due to large peaks in the
amplitude response can be spread over a wide frequency
domain if the frequency resolution is low. This reduces
the observed maximum gain, and can therefore lead to
an underestimation of the model mismatch. The remedy
is to use a high frequency resolution; increasing the res-
olution until no significant increase in the peaks of the
ETFE is observed.

4.4 Approximating the measured uncertainty

The measured uncertainty can not be expected to
capture all the uncertainty present in the system. It is
therefore necessary to compute a more conservative esti-
mate �̂�(z−1) of the uncertainty; over-bounding the mea-
sured uncertainty. One way to achieve this is to consider
the positive-real rational function

Υ̂(z−1) =
Υ̂b(z−1)
Υ̂a(z−1)

≜ �̂�(z−1)�̂�(z) = |�̂�(𝜔)|2 (33)

with order Q, where

Υ̂b(z−1) = b(Q)zQ + b(Q − 1)zQ−1 +…
+ b(0) +… + b(Q − 1)z−Q+1 + b(Q)z−Q .

(34)
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and

Υ̂a(z−1) = zQ + a(Q − 1)zQ−1 +…
+ a(0) +… + a(Q − 1)z−Q+1 + z−Q .

(35)

Here, a(Q) = 1, and the rational function has 2Q + 1
unique coefficients. The frequency response is

Υ̂(𝜔) =
b(0) + 2

∑Q
n=1 cos(n𝜔)b(n)

a(0) + 2
∑Q−1

n=1 cos(n𝜔)a(n) + 2 cos(Q𝜔)
,

(36)

and for nf ≥ 2Q + 1 frequency samples, i.e. the number
of samples used to compute (32), 𝜔i ∈ [0, 𝜋] it can be
expressed as[

𝛀,−𝛀𝐀𝜐m

] [𝚯b
𝚯a

]
= 𝝎Q◦𝐀𝜐m

(37)

where ◦ denotes the Hadamard product, and

𝐀𝜐m
=
[ |𝜐m(𝜔1)|2 · · · |𝜐m(𝜔nf

)|2 ]T
, (38)

𝛀 =
⎡⎢⎢⎣
𝛀1
⋮
𝛀nf

⎤⎥⎥⎦ , (39)

𝛀i =
[

1 2 cos(𝜔i) · · · 2 cos(Q𝜔i)
]
, (40)

𝛀𝐀𝜐
= �̄�◦

(
𝐀𝜐 ⊗ 𝟏T) (41)

�̄� =
⎡⎢⎢⎣
�̄�1
⋮
�̄�nf

⎤⎥⎥⎦ , (42)

�̄�i =
[

1 2 cos(𝜔i) · · · 2 cos((Q − 1)𝜔i)
]
, (43)

𝝎Q =
[

2 cos(Q𝜔1) · · · 2 cos(Q𝜔nf
)
]T

, (44)

𝚯b =
[

b(0) b(1) · · · b(Q)
]T

, (45)

𝚯a =
[

a(0) a(1) · · · a(Q − 1)
]T

, (46)

where ⊗ denotes the Kronecker product.
Using a positive-real rational function makes it pos-

sible to solve for an over-bounding interpolation Υ(z−1)
using convex optimization [34]:

minimize
Θ

‖𝐗𝚯 − 𝐘‖1 (47)

s.t. 𝐗𝚯 − 𝐘 ≥ 𝟎
𝛀𝚯b ≥ 𝛾b𝟏

𝛀
[
𝚯a

T 1
]T

≥ 𝛾a𝟏
where

𝐗 =
[
𝛀,−𝛀𝐀𝜐

]
, 𝚯 =

[
𝚯b
𝚯a

]
, and 𝐘 = 𝝎Q◦𝐀𝜐 .

If 𝛾a, 𝛾b ≥ 0, the constraints ensure that both the numer-
ator and denominator will be positive-real. The first
constraint ensures the over-bound. The values of 𝛾a and
𝛾b can be used to control the slope of the interpola-
tion, by reducing the depths and peaks of the zeros and
poles. A stable transfer-function weight �̂�(z−1) can also be
obtained by spectral factorization of Υ̂(z−1) = �̂�(z−1)�̂�(z).
The desired magnitude response for H1(z−1) can then be
computed from

||H1(𝜔)|| ≤ 1
ks |�̂�(𝜔)| , (48)

where the constant ks ≥ 1 has been introduced to pro-
vide an additional stability margin, to account for any
unmeasured and unknown effects.

V. EXPERIMENTAL RESULTS

5.1 System description

The experiments were conducted on the two-axis
serial-kinematic nanopositioning stage shown in Fig. 4.
Each axis contains a 12𝜇mm long piezoelectric stack
actuator (Noliac NAC2003-H12) with a free displace-
ment of 12 μm at 200 V. The flexure design includes
a mechanical amplifier to provide a total range of
30 μm. The flexures also mitigate cross-coupling such
that each axis can be controlled independently. More
details on the design of this stage can be found in [36].
The displacement of the moving platform is measured
by a Microsense 6810 capacitive gauge and 6504-01
probe, which has a sensitivity of 2.5μm/V. The stage is
driven a by PiezoDrive PDL200 voltage amplifier with
a gain of 20 V/V. The control law was implemented
on a dSPACE DS1104 hardware-in-the-loop system via
Simulink Coder. The anti-aliasing and reconstruction fil-
ters were implemented using two Stanford Research Sys-
tem SIM965 analog filters. The experiments were done
using the x-axis. The sampling frequency of the system
was 10kHz and the reference was a 40-Hz triangle wave,
i.e., Ts = 0.1 ms and L = 25 ms which resulted in
N = 250.

5.2 Inverse plant response filter

The IPRF H3(z−1) is an FIR filter synthesized
using frequency sampling, as discussed in Sec. 3.1. A
Hann window was applied to the FIR filter to improve
the inter-sample response. Welch’s method, discussed in
Sec. 3.2, with N = 250 frequency samples and a
Hamming window was used to generate the ETFE. In
Fig. 5, the frequency response of the ETFE and FIR
inverse filter H3(z−1) is plotted, as well as the prod-
uct zN∕2H3(z−1)Ĝ(z−1), where Ĝ(z−1) is the ETFE with
N = 250 frequency samples.

© 2016 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd
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Fig. 4. Two-axis serial-kinematic nano-positioning
platform [36]. [Color figure can be viewed at
wileyonlinelibrary.com]

Fig. 5. ETFE, IPRF, and the product of the ETFE and IPRF.
[Color figure can be viewed at wileyonlinelibrary.com]

Fig. 6. The magnitude of the model mismatch (28); the
product between the high resolution empirical
transfer-function estimate (ETFE) and the inverse
plant response filter (IPRF). [Color figure can be
viewed at wileyonlinelibrary.com]

5.3 Brick-wall low-pass filter approach

The number of taps in H3(z−1) is dictated by (2).
The number of taps limits the frequency resolution of
the filter, and the Hann window used to improve the
inter-sample behavior of the H3(z−1) also reduces the
accuracy of the model at the frequency samples. Hence,
there will be a mismatch between the IPRF and the plant
response. A high-resolution ETFE with 25 000 frequency
samples was generated using Welch’s method in order to
produce a good estimate of the mismatch. The measured
mismatch is shown in Fig. 6, where the |H3(z−1)Ĝ(z−1)| is
shown to be approximately unity up to about 1.25 kHz.

The desired magnitude response |H1(z−1)| of the
filter was chosen to be the magnitude response of a
24th-order low-pass Butterworth filter with a cut-off fre-
quency of 1.15 kHz that was discretized using zero-order
hold. The frequency response of the filter and the stability
criterion (4) are plotted in Fig. 7.

5.4 Mismatch approach

In Fig. 8, the relative error (30) of the system
is shown. The uncertainty between the high resolution
ETFE and the IPRF is large at higher frequency. The
magnitude response of �̂�(z−1) is the uncertainty bound of
the system represented by the dashed line. This bound
was found using the method in Sec. 4.4, where Q = 11,
𝛾a = 5 and 𝛾b = 100. The stability margin of the
system is increased by using ks = 1.5. Due to the
hysteresis in the piezoelectric actuator, the effective gain
of the actuator is known to change by up to 80% [37],
hence a constant margin should capture this uncertainty
well. The frequency response of the filter and the stability
criterion (4) are shown in Fig. 9.

Fig. 7. Robustness filter H1(z−1) and stability criterion
(brick-wall). [Color figure can be viewed at
wileyonlinelibrary.com]
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Fig. 8. Relative model mismatch (30) and estimated
uncertainty over-bound �̂�(z−1) for the system. [Color
figure can be viewed at wileyonlinelibrary.com]

Fig. 9. Robustness filter H1(z−1) and stability criterion
(mismatch). [Color figure can be viewed at
wileyonlinelibrary.com]

VI. RESULTS

The reference signal is a ±5 μm triangular wave
at 40 Hz. The reference signal and the measured
steady-state displacement for both RC configurations is
shown in Fig. 10. The absolute value of the steady-state
error signal is shown in Fig. 11. With y as the measured
output and r as the reference, the error signal is denoted
e = r − y. The maximum tracking error (ME) is then
defined as

emax (%) =
max |e|

max y − min y
× 100% ,

and the normalized root-mean-squared error (NRSME)
is defined as

eRMS (%) =

√
1
N

∑N−1
n=0 |e(n)|2

max y − min y
× 100% .

The tracking performance results are summarized in
Tab. I.

Fig. 10. Measured displacements, offset by ±1 μm to enhance
viewing. [Color figure can be viewed at
wileyonlinelibrary.com]

Table I. Tracking error for a ±5 μm triangle wave at 40 Hz.

Robustness filter design emax (%) eRMS (%)

Brick-wall low-pass filter approach 0.7904 0.0902
Mismatch approach 0.7217 0.0856

Fig. 11. The absolute value of the displacement error. [Color
figure can be viewed at wileyonlinelibrary.com]

Fig. 12. Comparison of the robustness filters H1(z−1). [Color
figure can be viewed at wileyonlinelibrary.com]
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Fig. 13. Sensitivity functions for the two robustness filters.
[Color figure can be viewed at wileyonlinelibrary.com]

VII. DISCUSSION

The steady-state tracking error is shown in Fig. 11
and summarized in Tab. I. The results demonstrate a 9%
improvement in the ME and 5% for the NRMSE. This
improvement is due to increased gain at the majority of
signal harmonics.

In Fig. 12, the roll-off rate of the proposed filter can
be observed to be slower than the the brick-wall filter.
The attenuation of the sensitivity function is also greater
at the majority of signal harmonics, as demonstrated in
Fig. 13

Note that the robust filter rolls off at a lower fre-
quency than the brick-wall filter. This results in a discrete
number of frequencies close to the system bandwidth
where the tracking performance of the brick-wall filter
could be superior. At these frequencies, the harmon-
ics would be well beyond the system bandwidth so the
reference signal would need to be sinusoidal, which is
of little practical interest. However, if such conditions
were encountered, a weighing function could be added
to (47) to control the shape of the over-bound in more
detail, making it possible to recover any reduced gain in
the resulting robustness filter. In typical applications, the
additional complexity of this procedure is not considered
to be justified.

The improved attenuation at the harmonic fre-
quencies in the sensitivity function comes at the cost
of reduced attenuation between these frequencies. This
is due to the restriction imposed by Bode’s sensitivity
integral [38]. It should be noted, that if the system is
subject to significant noise and disturbances for frequen-
cies with reduced sensitivity function attenuation, the
performance might deteriorate.

VIII. CONCLUSIONS

A method for improving the performance of repet-
itive control while preserving robust stability has been
described: Convex optimization is used to synthesize the
robustness filter from an estimated over-bound of the
modeling uncertainty. The result is less conservative than
the commonly used brick-wall filter, and the method-
ology is more automated. Experimental application to
a nanopositioning system demonstrated a 9% improve-
ment in the maximum tracking error and a 5% improve-
ment in the root-mean-squared error compared to the
traditional approach.

REFERENCES

1. Hara, S., Y. Yamamoto, T. Omata, and M. Nakano,
“Repetitive control system: A new type servo system
for periodic exogenous signals,” IEEE Trans. Autom.
Control, Vol. 33, No. 7, pp. 659–668 (1988).

2. Francis, B. A. and W. M. Wonham, “Internal model
principle of control-theory,” Automatica, Vol. 12,
No. 5, pp. 457–465 (1976).

3. Inoue, T., M. Nakano, T. Kubo, S. Matsumoto, and
H. Baba, “High accuracy control of a proton syn-
chrotron magnet power supply,” Vol. 20, Proc. 8th
IFAC World Congr., pp. 216–221 (1981).

4. Sato, H., T. Sueno, T. Toyama, M. Mikawa, T. Toda,
and S. Matsumoto, “High accuracy magnet power
supply for proton synchrotron by repetitive control,”
Proc. 22nd Annual IEEE Power Electronics Special-
ists Conf., pp. 812–816 (1991).

5. Inoue, T., M. Nakano, and S. Iwai, “High accuracy
control of servomechanism for repeated contouring,”
Proc. 10th Annual Symp. on Increm. Motion Con-
trol Systems and Devices, Urbana-Champaign, IL,
pp. 285–292 (1981).

6. Yamada, M., Z. Riadh, and Y. Funahashi, “Design
of discrete-time repetitive control system for pole
placement and application,” IEEE/ASME Trans.
Mechatron., Vol. 4, No. 2, pp. 110–118 (1999).

7. Teo, Y. R. and A. J. Fleming, “A new repetitive con-
trol scheme based on non-causal FIR filters,” Proc.
Amer. Control Conf., Portland, OR, pp. 991–996
(2014).

8. Teo, Y. R., A. A. Eielsen, J. T. Gravdahl, and
A. J. Fleming, “Discrete-time repetitive control with
model-less FIR filter inversion for high performance
nanopositioning,” Proc. IEEE/ASME Int. Conf. on
Adv. Intell. Mechatron., Besacon, pp. 1664–1669
(2014).

9. Lee, R. C. H. and M. C. Smith, “Repetitive control
experiments for a cd player,” Proc. Amer. Control
Conf., Philadelphia, PA, pp. 2682–2684 (1998).

© 2016 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd

http://onlinelibrary.wiley.com/


1056 Asian Journal of Control, Vol. 20, No. 3, pp. 1047–1057, May 2018

10. Moon, J., M. Lee, and M. J. Chung, “Repetitive con-
trol for the track-following servo system of an opti-
cal disk drive,” IEEE Trans. Control Syst. Technol.,
Vol. 6, No. 5, pp. 663–670 (1998).

11. Steinbuch, M., S. Weiland, and T. Singh, “Design
of noise and period-time robust high-order repet-
itive control, with application to optical storage,”
Automatica, Vol. 43, No. 12, pp. 2086–2095 (2007).

12. Kim, D. H. and T. Tsao, “Robust performance con-
trol of electrohydraulic actuators for electronic cam
motion generation,” IEEE Trans. Control Syst. Tech-
nol., Vol. 8, No. 2, pp. 220–227 (2000).

13. Escobar, G., P. G. Hernandez-Briones, P. R.
Martinez, M. Hernandez-Gomez, and R. E.
Torres-Olguin, “A repetitive-based controller for
the compensation of 6𝓁±1 harmonic compo-
nents,” IEEE Trans. Ind. Electron, Vol. 55, No. 8,
pp. 3150–3158 (2008).

14. Fleming, A. J., B. J. Kenton, and K. K. Leang,
“Bridging the gap between conventional and
video-speed scanning probe microscopes,” Ultra-
microscopy, Vol. 110, No. 9, pp. 1205–1214
(2010).

15. Shan, Y. and K. K. Leang, “Design and control
for high-speed nanopositioning: Serial-kinematic
nanopositioners and repetitive control for nanofab-
rication,” IEEE Control Syst. Mag., Vol. 33, No. 6,
pp. 86–105 (2013).

16. Aridogan, U., Y. Shan, and K. K. Leang, “Design
and analysis of discrete-time repetitive control for
scanning probe microscopes,” J. Dyn. Syst. Meas.
Control -Trans. ASME, Vol. 131, No. 6, pp. 061103
(12 pages) (2009).

17. Tomizuka, M., T. Tsao, and K. Chew, “Analysis and
synthesis of discrete-time repetitive controllers,” J.
Dyn. Syst. Meas. Control -Trans. ASME, Vol. 111,
No. 3, pp. 353–358 (1989).

18. Panomruttanarug, B. and R. W. Longman, “De-
signing optimized FIR repetitive controllers from
noisy frequency response data,” Adv. Astronaut. Sci.,
Vol. 127, pp. 1723–1742 (2007).

19. Longman, R. W., “On the theory and design of linear
repetitive control systems,” Eur. J. Control., Vol. 16,
No. 5, pp. 447–496 (2010).

20. Selesnick, I. W., M. Lang, and C. S. Burrus, “Con-
strained least square design of FIR filters without
specified transition bands,” IEEE Trans. Signal Pro-
cess., Vol. 44, No. 8, pp. 1879–1892 (1996).

21. Teo, Y. R., A Eielsen, J. T. Gravdahl, and A. J. Flem-
ing, “A simplified method for discrete-time repetitive
control using model-less finite impulse response fil-
ter inversion,” J. Dyn. Syst. Meas. Control -Trans.
ASME, Vol. 138, No. 8, pp. 081002 (13 pages) (2016).

22. Rabiner, L. R., “Techniques for designing
finite-duration impulse-response digital filters,”
IEEE Trans. Commun. Technol., Vol. COM-19,
No. 2, pp. 188–195 (1971).

23. Inoue, T., “Practical repetitive control system
design,” Proc. 29th IEEE Conf. Decis. Contr.,
Honolulu, HI, pp. 1673–1678 (1990).

24. Chew, K.-K. and M. Tomizuka, “Steady-state and
stochastic performance of a modified discrete-time
prototype repetitive controller,” J. Dyn. Syst. Meas.
Control -Trans. ASME, Vol. 112, No. 1, pp. 35–41
(1990).

25. Yamamoto, Y. and S. Hara, “Internal and external
stability and robust stability condition for a class of
infinite-dimensional systems,” Automatica, Vol. 28,
No. 1, pp. 81–93 (1992).

26. Yamamoto, Y., “Learning control and related prob-
lems in infinite-dimensional systems,” In Trentel-
man, H. L. and J. C. Willems (Eds.) Essays on
control: Perspectives in the theory and its applications,
Birkhäuser, Basel, pp. 191–222 (1993).

27. Pipeleers, G., B. Demeulenaere, J. De Schutter, and J.
Swevers, “Robust high-order repetitive control: Opti-
mal performance trade-offs,” Automatica, Vol. 44,
No. 10, pp. 2628–2634 (2008).

28. Hillerstrom, G. and J. Sternby, “Repetitive control
using low order models,” Proc. Amer. Control Conf.,
Baltimore, MD, pp. 1873–1878 (1994).

29. Ljung, L., System Identification: Theory for the User,
2nd, Prentice Hall, Inc, Upper Saddle River, New
Jersey (1999).

30. Welch, P. D., “The use of fast fourier transform for
the estimation of power spectra: A method based on
time averaging over short, modified periodograms,”
IEEE Trans. Audio Electroacoust., Vol. 15, No. 2,
pp. 70–73 (1967).

31. Osburn, A. W. and M. A. Franchek, “Designing
robust repetitive controllers,” J. Dyn. Syst. Meas.
Control -Trans. ASME, Vol. 126, No. 4, pp. 865–872
(2004).

32. Mareels, I. M. Y., M. Gevers, R. R. Bitmead, J.
Lygeros, R. L. Kosut, and M. A. Poubelle, “How
exciting can a signal really be?,” Syst. Control Lett.,
Vol. 8, No. 3, pp. 197–204 (1987).

33. Rojas, C. R., J. S. Welsh, G. C. Goodwin, and
A. Feuer, “Robust optimal experiment design for
system identification,” Automatica, Vol. 43, No. 6,
pp. 993–1008 (2007).

34. Grant, M. and S. Boyd, “Graph implementations
for nonsmooth convex programs,” In Blondel, V,
S Boyd, and H Kimura (Eds.) Recent Advances in
Learning and Control, Lecture Notes in Control
and Information Sciences, Springer-Verlag, London,
pp. 95–110 (2008).

© 2016 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd



A. A. Eielsen et al.: Improving Robustness Filter Bandwidth in RC with Model Mismatch 1057

35. McClellan, J. H., T. W. Parks, and L. R. Rabiner,
“A computer program for designing optimum FIR
linear phase digital filters,” IEEE Trans. Audio
Electroacoust., Vol. 21, No. 6, pp. 506–526 (1973).

36. Kenton, B. J. and K. K. Leang, “Design and control
of a three-axis serial-kinematic high-bandwidth
nanopositioner,” IEEE/ASME Trans. Mechatron.,
Vol. 17, No. 2, pp. 356–369 (2012).

37. Eielsen, A. A., J. T. Gravdahl, and K. K. Leang,
“Low-order continuous-time robust repetitive con-
trol: Application in nanopositioning,” Mechatronics,
Vol. 30, pp. 231–243 (2015).

38. Goodwin, G. C., S. F. Graebe, and M. E. Salgado,
Control System Design, Prentice Hall, Upper Saddle,
River, NJ (2000).

Arnfinn A. Eielsen was born in Sta-
vanger, Norway in 1980. He received
the siv.ing. (MSc) degree and the Ph.D.
degree in Engineering Cybernetics from
the Department of Engineering Cyber-
netics, at the Norwegian University of
Science and Technology (NTNU), Trond-

heim, Norway in 2007 and 2012, respectively. During
his doctoral studies he was a visiting academic at the
University of Nevada, Reno, and the University of New-
castle (UoN), Australia. After the completion of the
Ph.D degree he was a Postdoctoral Research Fellow at
the Department of Engineering Cybernetics at NTNU,
focusing on motion control and instrumentation. He is
currently employed as a Research Fellow in the School
of Electrical Engineering and Computer Science at UoN.
Research interests include mathematical modeling, iden-
tification, adaptive systems, motion control, and control
theory in general. He is a member of IEEE.

Yik R. Teo graduated from The Univer-
sity of Newcastle, Australia (Callaghan
campus) with a Bachelor of Electrical
Engineering (1st Class Honors) in 2010
and a Master of Philosophy in Mechan-
ical Engineering in 2013. He is currently
pursuing his Ph.D. under the supervision

of Dr. Andrew J Fleming at the Precision Mechatron-
ics Lab located at The University of Newcastle, Aus-
tralia. His research includes high-precision positioning,
scanning probe microscopy, and nano-fabrication. Aca-
demic awards include the Glenn and Ken Moss Research
Higher Degree Award, Australian Postgraduate Award
and the Vice-Chancellor Award in Outstanding Research
Candidate.

Andrew J. Fleming graduated from
The University of Newcastle, Australia
(Callaghan campus) with a Bachelor of
Electrical Engineering in 2000 and Ph.D
in 2004. Dr. Fleming is presently an Aus-
tralian Research Council Future Fellow
and Director of the Precision Mechatron-

ics Lab at The University of Newcastle, Australia. His
research interests include biomedical devices, lithogra-
phy, nano-positioning, and scanning probe microscopy.
Dr. Fleming’s research awards include the IEEE Transac-
tions on Control Systems Technology Outstanding Paper
Award and The University of Newcastle Researcher of
the Year Award. He is the co-author of three books
and more than 150 Journal and Conference articles. Dr.
Fleming is the inventor of several patent applications,
and in 2012 he received the Newcastle Innovation Rising
Star Award for Excellence in Industrial Engagement.

© 2016 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd


	IMPROVING ROBUSTNESS FILTER BANDWIDTH IN REPETITIVE CONTROL BY CONSIDERING MODEL MISMATCH
	Abstract
	Introduction
	Discrete-time Repetitive Control
	The Inverse Plant Response Filter
	Synthesizing the inverse plant response filter
	Empirical transfer-function estimate

	The Robustness Filter
	Synthesizing the robustness filter
	Brick-wall low-pass filter approach
	Mismatch approach
	Measuring the Model Mismatch

	Approximating the measured uncertainty

	Experimental Results
	System description
	Inverse plant response filter
	Brick-wall low-pass filter approach
	Mismatch approach

	Results
	Discussion
	Conclusions
	References


