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Abstract— This article compares the performance of recently
introduced learning control methods on a 5-axis nanopositioning
stage. Of these methods, the Smoothed Model-Free Inversion-
based Iterative Control (SMF-IIC) method requires no modeling
effort for effective tracking of repetitive trajectories and is
readily applicable to multi-variable systems. Experimental results
show that the tracking performance of the SMF-IIC method is
similar to traditional learning control methods when applied to
a single axis of the nanopositioning stage. The SMF-IIC method
is also found to be effective for reference tracking of two axes
simultaneously.

I. INTRODUCTION

Learning control was first introduced in the 80’s to improve
the tracking performance of systems with repeating reference
trajectories, and has since been applied in applications, ranging
from wire-bonding [1] to industrial printing [2]. The charac-
teristics of learning control are particularly suited to challeng-
ing motion control problems, for example, nanopositioning
in Atomic Force Microscopes (AFMs). Nanopositioners are
high order, lightly damped systems, which makes controller
design challenging and limits the achievable performance and
robustness. Fortunately, AFM trajectories are pre-determined
and are therefore suitable for various learning control methods.
One of these learning control methods, Iterative Learning
Control (ILC), has been successfully applied to nanopositioners
in [3] and [4]. Another method, Repetitive Control (RC), has
been investigated in [5], [6] and [7], while Inversion-based
Iterative Control (IIC) has been successfully attempted in [8].

Each of these methods requires a model of the system,
however, the Model-less Enhanced Inversion-based Iterative
Control (M-EIIC) was developed in [9] and [10] to reduce
the modeling requirements of learning control. This method
is improved in [11] and extended to multi-variable systems in
[12] with the Smoothed Model-Free Inversion-based Iterative
Control (SMF-IIC) method.

Although the tracking performance of these methods is
promising, the performance has not been directly compared to
existing methods such as RC and ILC. The aim of this article
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is to provide an experimental comparison of ILC, RC, M-
EIIC, and SMF-IIC applied to the challenging control problem
presented by the monolithic nanopositioning stage described
in [13]. This article also investigates whether the SMF-IIC
method is able to effectively track a two-dimensional AFM
raster scanning trajectory.

The outline of this article is as follows. In Section II the
experimental setup is introduced. In Section III the SMF-IIC
learning control method is discussed. The simulated and ex-
perimental performance comparison is reported in Section IV.
Finally, Section V summarizes the comparison results.

II. EXPERIMENTAL SETUP

Fig. 1. Top view of the 5-axis monolithic nanopositioning stage. The stage
consists of four piezoelectric benders which are connected to a fixed support
on one side and to the sample table on the other.

The nanopositioning stage [13] and [14] consists of a fixed
base plate, four piezoelectric bimorph actuators and a sample
table, which is illustrated in Fig. 1. The working principle
of the bimorph piezoelectric actuators is illustrated in Fig.
2. The four piezoelectric actuators can create motion in five
degrees of freedom, three translations x, y and z and two
rotations, around the x axis (θx) and the y axis (θy) respectively.
Integrated sensing is realised by eight independent Tee-Rosette
piezoresistive strain sensors located on the bimorph benders
[14]. The output signals are normalised between [−1,1] with
respect to the corresponding ranges, which are presented in
Table I.

The nanopositioner is controlled by a dSpace DS1103
system, which is programmed in Simulink. Communication
between MATLAB and the DS1103 system is established by
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(a) Bender at rest

(b) Bender performing an in-plane motion

(c) Bender performing an out-of-plane bending motion

Fig. 2. The x− piezoelectric bimorph bender shown in Fig. 1 and its working
principle. The bender consists of two outside layers of piezoelectric material
(PZT-5A), which are polarised outwardly, with a grounded middle layer of
Nickel [13], [15]. In (a), the bender is shown when no voltages are applied to
either piezoelectric sheet. In (b), the bender is shown when positive voltages
are applied to both piezoelectric sheets, which results in a linear motion in
the positive x direction. In (c), the bender is shown when a positive voltage
is applied to the upper sheet and a negative voltage is applied to the lower
sheet, resulting in downwards bending motion of the the bimorph bender.

means of the ASAM XIL API, facilitating the system reset after
each trial and offline updating of the feed forward signals, as
is required for the ILC and IIC methods.

TABLE I
RANGE VALUES FOR EACH OF THE FIVE AXES

Axis Range
x 5 [µm]
y 5 [µm]
z 16 [µm]

θx 500 [µrad]
θy 500 [µrad]

III. CONTROL METHODS

Inversion-based Iterative Control (IIC) was first introduced
in [16] to compensate for errors caused by interaction during
AFM scanning. An schematic overview of the IIC algorithm
is shown in Fig. 3.

IIC is very similar to the commonly applied infinite time ILC
method (it has been shown that both methods are equivalent
under certain conditions [17]), the main difference being that
the updating of the feed forward signal is performed in the
frequency domain instead of using discrete filters. The main
advantages of this method with respect to ILC methods are that
parametric models of the plant are not necessary and stability
issues resulting from inversion of non-minimum phase systems
are avoided [18]. A drawback of this method is that it requires
a frequency response function (FRF) model with a resolution
corresponding to the length of the reference signal. The IIC

Update Law Ej(!k)

ej(t)

r(t)

yj(t)Systemfj(t)

Fj+1(!k)

DFTIDFT

+

−

Fig. 3. Block diagram of the IIC algorithm. The system is excited with an
arbitrary feed forward signal and the output is captured. The error is obtained
by subtracting the reference from the output. The error is transformed into the
frequency domain by a Discrete Fourier Transform (DFT) and the new feed
forward signal is calculated with an update law. Finally, the new feed forward
signal is transformed into the time domain by applying an Inverse Discrete
Fourier Transform (IDFT) [10].

updating law was defined as{
Fj(ωk) = αR(ωk) for j = 1
Fj+1(ωk) = Fj(ωk)+L j(ωk)E j(ωk) for j ≥ 2

(1)

where α 6= 0 is pre-chosen, often as the inverse of the DC
gain of the system [9], R is the DFT of the reference signal
r, L(ωk) is the learning function and j is the trial number.
The learning function is the inverse FRF approximations of
the plant, defined at normalised frequencies {ωk ∈ C | ωk =
2πk
N ,k = 0,1, ...,N−2,N−1} [18].

When IIC was first introduced, the inverse FRF approxi-
mation had to be determined a priori. This drawback was
addressed in [9] and [10], resulting in the first model-less
IIC method. The rationale behind this method was to utilize
input and output signals from previous trials to estimate the
learning function L j(ωk)=

Fj(ωk)

Y j(ωk)
∀ Yj(ωk) 6= 0. However, when

Yj( jωk)→ 0 the learning function approaches infinity, resulting
in an unbounded error. This major drawback was overcome in
[11] by including a variable learning gain ρ(|Yj( jωk)|) ∈ [0,1]
in the updating law. The aim of this function was to reduce
learning when |Yj( jωk)| drops below a predefined threshold,
eventually being equal to zero if Yj( jωk) = 0. The model-
less IIC method was also extended to square multi-variable
systems in [18], resulting in the SMF-IIC method. Accurately
estimating a multi-variable FRF model requires z≥ nu, where
nu is the number of inputs, sufficiently distinct experiments
[19]. Taking this requirement into account, results in the
following multi-variable learning function [18]

L(ωk) = F(ωk)Y(ωk)
†. (2)

F(ωk) and Y(ωk) are defined as

F(ωk) = [Fj(ωk), ... ,Fj−z(ωk)] (3a)

Y(ωk) = [Yj(ωk), ... ,Yj−z(ωk)] (3b)
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and Y(ωk)
† is the smoothed pseudo-inverse of Y(ωk), which

is defined as

B† =
min(nr ,nc)

∑
i=1

vi
ρ(σi)

σi
uH

i (4)

for an arbitrary matrix B ∈C(nr ,nc) with singular value decom-
position B = ∑

min(nr ,nc)
i=1 uiσivH

i . ρ(σi) refers to the smoothing
function, which is now a function of the singular values of the
output matrix in (3b).

IV. EXPERIMENTAL RESULTS

The section compares the tracking performance of SMF-IIC
to ILC, model-less enhanced IIC, and RC. Furthermore, multi-
variable tracking results will also be reported for SMF-IIC.

A. Learning Control Comparison

In the first experiment, the SMF-IIC method is compared to
infinite-time Iterative Learning Control (ILC) [20], Repetitive
Control (RC) [21] and Model-less Enhanced Inversion-based
Iterative Control (M-EIIC) [9].

The reference signal during this experiment is a single period
of a 50 Hz triangle wave, which is zero phase filtered at 500
Hz to reduce excitation of the vertical resonance mode and
guarantee finite acceleration. For repetitive control, this signal
is repeated 20 times. For ILC, M-EIIC and SMF-IIC, the signal
is zero padded to ensure that the system reaches steady state
during each trial. For the experiment with the SMF-IIC method,
the proposed reference signal is applied to each of the five axes.
Since other methods are not readily applicable to multi-variable
systems, these are only applied to the x-axis.

Each experiment is initialised with DC gain feed forward
at trial number 1, which was determined a priori by a 10 Hz
sine wave excitation. The trial errors of each method versus the
iteration number is presented in Fig. 4. These results demon-
strate that the tracking performance of the learning control
methods after convergence is similar, generally resulting in
a rms error reduction of a factor ten compared to DC gain
feed forward. It is notable that the SMF-IIC method performs
comparably to other methods despite being applied to five
axes simultaneously and is compensating for errors caused by
cross coupling. Converged time domain results of each learning
control method are shown in Fig. 5. These results illustrate that
the tracking error is effectively reduced to noise level.

In conclusion, the SMF-IIC method yields similar tracking
performance compared to ILC, RC and M-EIIC. Advantages of
the SMF-IIC method are that no prior modelling is required and
that the method is readily applicable to multi-variable systems,
which is not the case for ILC, RC and M-EIIC. SMF-IIC is
therefore the preferable method for tracking reference signals
of multi-variable systems with complex dynamics.

B. Multi-variable Learning

In the second experiment, a multi-variable reference signal
is applied to the nanopositioner controlled with the SMF-IIC
method. The reference for this experiment consists of two
periods of a 50 Hz triangle wave, which is zero phase filtered

2 4 6 8 10 12 14 16 18 20

10
-3

10
-2

Fig. 4. The transient learning behaviour of the learning control methods,
where the normalized rms error of the x-axis is shown as a function of the
trial number.

at 500 Hz, on the x and y axis and zero reference on z, θx
and θy axes. The first trial is initialised with DC gain feed
forward in an equivalent manner to the first experiments. The
rms error of each axis as a function of the trial number is
presented in Fig. 6. Additionally, the time domain results of
the range normalised error for the x and y axes at the 20th trial
are shown in Fig. 7.

Fig. 6 shows that the rms error of the x and y axes is reduced
by a factor of 6.6 for the x axis and 12.7 for the y axis with
respect to DC gain feed forward, once convergence of the error
has been achieved. This asymptotic error is bounded by 10 nm
and 2.5 nm for the x and y axis respectively, as shown in Fig.
7. The SMF-IIC method is less effective in reducing the error
for the z, θx and θy axes, although the asymptotic RMS error
is bounded by 10 nm nonetheless.

C. Raster scanning results

For the third experiment, a raster scanning trajectory is
applied to the nanopositioner, which is controlled by the SMF-
IIC method. This reference consists of a staircase signal in the x
axis, a 50 Hz triangle wave in the y axis and zero reference for
the z, θx and θy axes, resulting in a 100 by 100 raster scan. This
reference is zero phase filtered at 500 Hz for aforementioned
reasons. The transient learning behavior resulting from this
reference signal is illustrated in Fig. 8.

The tracking performance after convergence of the SMF-
IIC method in this experiment is significantly worse than the
previous experiment shown in Fig. 6. This is mainly caused by
trial variant sensor drift, which is much more prevalent in this
experiment due to the fact that the reference lasts 1.2 seconds
compared to the 0.08 seconds in the second experiment. The
drifting effect is illustrated in Fig. 9, where the error signal is
shown at trials 14 (best case scenario), 19 (worst case scenario)
and 20.

This results shows that the error mainly consists of sensor
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(a) Time domain results of ILC
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(b) Time domain results of RC
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(c) Time domain results of ME-IIC
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(d) Time domain results of SMF-IIC

Fig. 5. Time domain results of the learning control methods at the 20th trial.
The plots on the left show the normalized reference signal and the normalized
output signal as a function of time. The plots on the right show the normalized
error signal as a function of time.

drift and measurement noise. This illustrates that the perfor-
mance of the SMF-IIC method deteriorates in the presence of
a non-periodic disturbance, as is typical for all learning control
methods. Such disturbances can however be effectively dealt
with by a low bandwidth feedback controller.

V. CONCLUSIONS

This article demonstrates that the SMF-IIC method performs
similarly to infinite time ILC, RC and model-less enhanced
IIC, for control of a lightly damped five degree-of-freedom
nanopositioner. This is noteworthy, as SMF-IIC requires no
modelling and can be applied to multi-variable systems with
little effort compared to the alternatives.

Experimental results show that the SMF-IIC method reduced
the RMS error below 5 nm for axes with a non-zero reference
on the experimental setup as discussed in Section II. The
SMF-IIC method also improved the tracking in axes with
zero reference, which cannot be achieved by SISO model-less
methods.

2 4 6 8 10 12 14 16 18 20

10
-3

10
-2
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Fig. 6. The transient learning behaviour of the SMF-IIC method resulting
from a x and y triangular reference for each axis, where the normalized rms
error of the each axis is provided as a function of time.
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Fig. 7. Time domain results of the multi-variable learning experiment for
the x and y axes. The upper plots illustrate the normalized output signal and
reference signal as a function of time. The lower plots illustrate the normalized
error signal as a function of time.

In the third set of experiments, a raster scan was performed,
which is commonly used in applications such as atomic force
microscopy. The tracking error was dominated by sensor drift
which appears as a non-periodic disturbance. SMF-IIC was
observed to deteriorate equivalently to other iterative methods.
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Fig. 8. The transient learning behaviour of the SMF-IIC method during the
raster scanning experiment for each axis, where the normalized rms error is
provided as a function of the trial number.
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Fig. 9. The time domain error results of the SMF-IIC method during the
raster scanning experiment for the x axis at trials 14, 19 and 20, where the
normalised error of the x-axis is provided as a function of time.
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