Five-axis bimorph monolithic nanopositioning stage: Design, modeling, and characterization

Meysam Omidbeike⁎, Steven I. Moore, Yuen K. Yong, Andrew J. Fleming

School of Electrical Engineering and Computing, University of Newcastle, Australia

Abstract

The article describes the design and modeling of a five-axis monolithic nanopositioning stage constructed from a bimorph piezoelectric sheet. Six-axis motion is also possible but requires 16 amplifier channels rather than 8. The nanopositioner is ultra low profile with a thickness of 1 mm. Analytical modeling and finite-element-analysis accurately predict the experimental performance. The stage was conservatively driven with 33% of the maximum voltage, which resulted in an X and Y travel range of 6.22 μm and 5.27 μm respectively; a Z travel range of 26.5 μm; and a rotational motion of 600 μrad and 884 μrad about the X and Y axis respectively. The first resonance frequency occurs at 883 Hz in the Z axis. Experimental atomic force microscopy is performed using the proposed device as a sample scanner.

1. Introduction

The rapid growth in nanotechnology has increased the demand for ultra-precision multi-axis nanopositioning systems [1–3]. In the modern era of nanosystems, many applications require positioning capabilities in more than three degrees-of-freedom (DOF). Multi-axis nanopositioners have enabled a wide range of applications in scanning microscopy [4–7], biotechnology [8], mask/wafer positioning [9,10], nanofabrication [9,11], cell surgery [12] and precision optics [13–16].

Piezoelectric tube scanners were the first three-DOF nanopositioners used in scanning tunneling microscopes [17]. The low cost and simplicity of these monolithic devices have made them popular in applications such as atomic force microscopy [18–20], fiber-optic scanning [21] and endoscopic imaging [22]. However, the tube scanner needs to be long and thin to achieve large displacement. For example, the PT230.94 tube scanner from Physik Instrumente has a length of 30 mm, an outer diameter of 3.2 mm and a thickness of 0.5 mm in order to achieve a travel range of 70 μm. The high-aspect ratio in length and diameter results in low resonance frequencies and high cross-coupling between lateral and vertical axes [23]. To mitigate the above shortfalls, flexure-based nanopositioning systems are used to replace piezoelectric tube scanners in atomic force microscopes [24–27,28,29].

To add rotational positioning capabilities, flexure-based hexapod nanopositioners were introduced [30–33,34]. These devices employ compliant mechanisms composed of metal flexures to create multi-axis linear and rotational displacement. There are a number of drawbacks associated with these devices including relatively large size, complex kinematics, and high cost. A significant advantage of five- and six-axis stages is that they are able to compensate of errors due to cross-coupling. For example, a three axis XYZ stage produces non-zero parasitic rotation that is related to the deflection of the stage. Although it can be minimized by design, high precision applications such as wafer scanning [9] require active compensation requiring six DOF actuation.

To provide a more compact and lower cost alternative to piezoelectric tubes and flexure-based designs, a new class of monolithic nanopositioners constructed from a single piezoelectric sheet was proposed in [1] and [35,36]. In reference [1], a two-DOF monolithic nanopositioner is constructed by removing parts of a piezoelectric sheet to create active flexures that provide guidance and create X and Y axis motion. The device in [1] has an extremely low profile of only 0.5 mm which enables a new range of applications in atomic force microscopy, and particularly, scanning electron microscopy where the load-lock area may be less than 5 mm in height [37]. Sensing and control methods for the two-DOF stage in [1] were reported in [38] and [39].

Compared to other five- and six-axis nanopositioners, which are usually based on the hexapod principle [30–33,34] the proposed device is much smaller, especially in vertical height, but has a lower travel range, lower load capacity and less accuracy. For example, the
six-axis stage in [34] has a range of $80\,\mu\text{m}$ in the X, Y, Z directions, and $60\,\mu\text{rad}$ of rotation in three axes, with dimensions of $264\,\text{mm}$ in diameter and $148\,\text{mm}$ in height. The proposed device provides $6\,\mu\text{m}$ deflection in the X and Y axis, $26\,\mu\text{m}$ in the Z axis, and $700\,\mu\text{rad}$ of rotation about the X and Y axis, with dimensions of $63\,\text{mm}$ width and $1\,\text{mm}$ height, which is less than 1% of the height of [34]. The specifications and dimensions of other recently presented six-axis stages are listed in Table IV of [34]. Compared to other work, the proposed device is suited to low-accuracy applications that require a vertical height of less than a few millimeters, a load capacity of less than $10\,\text{g}$, and an X and Y axis deflection of less than $10\,\mu\text{m}$. Although the proposed design has a much lower stiffness and load capacity than other devices, this permits a much larger rotation about the X and Y axis (about $10\times$ greater than [34]).

1.1. Contribution

This work extends the previous three-axis monolithic nanopositioners to five or six degrees-of-freedom by utilizing a two layer piezoelectric sheet to create active flexures that provide in-plane and out-of-plane motion. This proposed mechanical design utilizes 20 active flexures to develop translation and rotation in, and about, the X, Y and Z axes, respectively. As illustrated in Figs. 1 and 2, each actuator comprises a bimorph piezoelectric beam with a grounded middle layer, and specific voltages applied to the top and bottom electrodes to create in-plane and out-of-plane motion. A graphical comparison of current and previous designs is shown in Fig. 2, including the unimorph parallel-kinematic design (top), serial kinematic design (middle), and the topic of this work (bottom). Other related work include closed-loop [38] and feedforward control [39] of extension actuators.

A preliminary version of this work was presented at the International Conference on Manipulation, Automation and Robotics at Small Scale (MARSS) [40]. This work used the constitutive piezoelectric equations, and Euler-Bernoulli beam theory to derive a static model for only five degrees-of-freedom due to the limitations of the modeling method. The effective stiffness and mass of the five DOFs were derived to estimate the corresponding resonance frequencies.

Compared to [40], the present work uses a combination of constitutive piezoelectric equations, Euler-Bernoulli beam theory, and Hamilton’s principle to fully model the statics and dynamics of the nanopositioner in all six DOFs. In addition, the effect of the load on the nanopositioner’s first out-of-plane resonance frequency has been modeled. This work also extends on [40] with an experimental identification of modal frequencies and shapes, and includes application to atomic force microscopy imaging.

The remainder of the paper proceeds as follows. Section 2 describes the design of the monolithic stage and the actuating principles. Section 3 presents a model of the nanopositioner which is used to derive analytical static rotational and translational gains, resonance frequencies and mode shapes. Finite-element simulations are presented in Section 4, followed by experimental results in Section 5, Section 6 demonstrates the application of the proposed nanopositioner to atomic force microscopy imaging.

2. Nanopositioner design and operation

The monolithic nanopositioner is illustrated in Fig. 1. The nanopositioner is fabricated from a bimorph piezoelectric sheet of PZT-5A (PiezoSystems Inc., USA). The bimorph (two-layer) sheet has two external and one internal electrode, which provides the ability to extend and bend. The mechanical and electrode features were created by subtractive ultrasonic machining. The flexures drive a central platform with length $2a$. Each flexure is indexed from 1 to 20 and is of identical length l and width t_p. The thickness of the piezoelectric sheet is t_z. The dimensions d_i and d_o are introduced to parameterize the location at which the flexure is attached to the central platform. Dimensions and material properties of the bimorph nanopositioner are given in Table 1. The stage dimensions were chosen to maximize the X and Y axis travel range, which is achieved by maximizing the flexure length. It is desirable to have a large number of flexures with a minimum of space between each flexure. The thinnest slot that could be cut by ultrasonic machining was $1\,\text{mm}$, which resulted in five flexures per side. The other dimensions are determined by the size of the sheet and central platform, which was $20\times20\,\text{mm}$.

The actuating principle for generating six-axis motion is shown in Fig. 3. Knowing that each layer is outwardly poled with the middle layer grounded, the same voltage applied to the top and bottom surface will cause the beam to expand or contract axially and displace the central platform in-plane. When voltages of the opposite sign are applied to the top and bottom surface, the beam bends and displaces the central stage out-of-plane.

To obtain the motion in Fig. 3 a number of independent voltage amplifiers are required. To actuate any single axis, only two amplifier channels are required. To actuate two axes simultaneously (except θ_x), four amplifier channels are required. To actuate the X, Y, and Z axis simultaneously, 8 amplifier channels are required. This configuration can also simultaneously actuate θ_x, θ_y axes to achieve five-axis motion. However, to obtain a combination of θ_x and any other axis, 16 amplifier channels are required, which is considered to be impractical. Therefore, the proposed design is primarily suited to five-axis motion (and eight amplifier channels). Although rotation around the Z-axis is also possible, this is not experimentally tested in the remainder of the article.

Electrical constraints are applied to the 40 electrodes (20 flexures with two electrodes) to actuate the six DOFs of the nanopositioner. Let $\phi_i^{(m)}$ and $\phi_i^{(b)}$ be the voltages of the top and bottom electrode of the i^{th} flexure. To separate in-plane and out-of-plane motion, the electrode voltages are parameterized in terms of a common mode $\phi_{cm}^{(m)}$ and a differential voltage $\phi_{d}^{(m)}$ as:

![Fig. 1. Dimensions of piezoelectric stage, where d_i and d_o are dimensionless fractions of the half width a.](image)
2017- Unimorph parallel-kinematic design with extension actuators [1]

2017- Feedback control using piezoelectric sensors [38]

2019- Unimorph serial-kinematic design with in-plane benders [36]

2018- Preliminary structural analysis [35]

Focus of This Work

2020- Bimorph parallel-kinematic design with out-of-plane benders

Y/X-Axis Rotation

X/Y-Axis Translation

Z-Axis Translation

2019- Preliminary structural analysis [40]

2019- Feedforward control using interferometer sensor [39]
these voltages are grouped into in-plane and out-of-plane electrical DOFs as:

\[\phi^{(i)} = \begin{bmatrix} \phi_{x}^{(i)} & \ldots & \phi_{z}^{(i)} \end{bmatrix}^T, \]

(3)

\[\phi^{(o)} = \begin{bmatrix} \phi_{x}^{(o)} & \ldots & \phi_{z}^{(o)} \end{bmatrix}^T. \]

(4)

For the six DOFs of the nanopositioner, six control voltages are introduced to parameterize the electrode voltages. They are the control voltages for X axis translation \(\phi_{ux} \), Y axis translation \(\phi_{uy} \), Z axis rotation \(\phi_{uz} \), Z axis translation \(\phi_{uz} \), X axis rotation \(\phi_{ux} \), and Y axis rotation \(\phi_{uy} \). Fig. 3 diagrammatically shows the relationship between the control voltages and the electrode voltages for each DOF of the nanopositioner.

3. Finite DOF nanopositioner model

This section presents the derivation of a 20 degree-of-freedom (DOF) model for the nanopositioner. Firstly, the fundamental principles which govern the dynamics of piezoelectric materials are introduced in Section 3.1. Then, a finite DOF model for each of the piezoelectric flexures and the central stage is derived in Section 3.2 and Section 3.3 respectively. In Section 3.4, the finite DOF models of the individual components are assembled into a single system using kinematic constraints. The final model relates the applied voltages to a set of mechanical DOFs which parameterize the deflection, bending and translation of the stage. In Sections 3.5 and 3.6 the model is used to derive analytical static rotational and translational gains, resonance frequencies and mode shapes.

3.1. Fundamental physical principles

Hamilton’s principle is a fundamental variational principle from which the mechanics of a physical system can be derived. This work analyzes the dynamics of a piezoelectric structure in response to external electrical work. For this class of problem Hamilton’s principle is expressed as [41–44,45].

\[\delta \int_{t_1}^{t_2} \left(T - H - V \right) dt = 0. \]

(5)

\(T \) is the kinetic energy, \(H \) is the enthalpy, \(V \) is the potential energy of the externally applied charges, and \(\delta \) is the variational operator [45]. The energies are formulated as:

\[T = \frac{1}{2} \int_\Omega \dot{u}^T \epsilon \dot{u} dV, \]

(6)

\[H = \frac{1}{2} \int_\Omega \tau^T S - D^T E dV, \]

(7)

\[V = \int_\Omega q \phi dV. \]

(8)

The variables are: the displacement field \(u \), the strain field \(S \), the stress field \(T \), the electric field \(E \), the electric displacement \(D \), the charge distribution \(q \), the electric potential \(\phi \), the material density \(\rho \), and the domain of the structure \(\Omega \). The behavior of the piezoelectric material is described by the constitutive equations [44]:

\[T = c S - \varepsilon E, \]

(9)

\[D = e S + \varepsilon E. \]

(10)
where \(c \) are the elastic moduli, \(e \) are the piezoelectric coefficients, and \(\epsilon \) are the dielectric permittivities.

3.2. Piezoelectric flexure dynamics

Using the fundamental principles from Section 3.1, this section outlines the derivation of a 5-DOF model of the piezoelectric flexure shown in Fig. 4. Euler-Bernoulli beam dynamics model the in-plane and out-of-plane deflections of the flexure, and bar dynamics model the extension. Kinematic constraints on the displacement field \(u = [u_x, u_y, u_z]^{T} \) of a flexure are [45]:

\[
\begin{align*}
&u_1(x, y, z) = u_0(x) - y \frac{\partial v_0}{\partial x} - z \frac{\partial w_0}{\partial x}, \\
&u_2(x, y, z) = v_0(x), \\
&u_3(x, y, z) = w_0(x).
\end{align*}
\]

Here the displacement field is parameterized in terms of the one-dimensional variables: the out-of-plane deflection \(w_0 \), the in-plane deflection \(v_0 \), and the axial displacement \(u_0 \). There is only one non-zero strain component associated with these kinematics:

\[
S_1 = \frac{\partial u_0}{\partial x} - y \frac{\partial^2 v_0}{\partial x^2} - z \frac{\partial^2 w_0}{\partial x^2}.
\]

The electric field needs to be parameterized in terms of the applied voltages. A parallel plate capacitive structure is assumed. The polarization vector of the two bimorph layers point outward. The electric field has one non-zero component given by:

\[
E_1(x, y, z) = \begin{cases} 2 \phi_1/t_z & \text{for } z \geq 0, \\ 2 \phi_2/t_z & \text{for } z < 0, \end{cases}
\]

where \(\phi_1 \) and \(\phi_2 \) are the voltages applied to the two electrodes, and \(t_z \) is the thickness of the flexure in the \(z \) direction. As per Section 2, the voltages are parameterized in terms of a common mode \(\phi_{cm} \) and a differential voltage \(\phi_d \):

\[
\begin{align*}
\phi_1 &= \phi_{cm} - \frac{1}{2} \phi_d, \\
\phi_2 &= \phi_{cm} + \frac{1}{2} \phi_d.
\end{align*}
\]

The charges \(q_1 \) and \(q_2 \) associated with the voltages \(\phi_1 \) and \(\phi_2 \) are also expressed in terms of a common-mode charge \(q_{cm} \) and a differential change \(q_d \):

\[
\begin{align*}
q_1 &= q_{cm} - \frac{1}{2} q_d, \\
q_2 &= q_{cm} + \frac{1}{2} q_d.
\end{align*}
\]

Since there is only one single non-zero component of both the strain field and the electric field, the constituent equations of the piezoelectric material from (9) and (10) simplify to:

\[
\begin{align*}
T_1 &= E S_1 - e_{31} E_3, \\
D_1 &= \epsilon_{31} E_3 + e_{33} E_3,
\end{align*}
\]

where \(E \) is Young’s modulus, \(e_{31} \) is the piezoelectric coefficient, and \(\epsilon_{33} \) is the dielectric permittivity. Finally, to produce a finite DOF model it is assumed the solutions are a linear combination of trial functions:

\[
\begin{align*}
u_0(x, t) &= c_0(t)^T \varphi_0(x), \\
v_0(x, t) &= c_0(t)^T \varphi_0(x), \\
0(x, t) &= c_0(t)^T \varphi_0(x), \\
0(x, t) &= c_0(t)^T \varphi_0(x), \\
0(x, t) &= c_0(t)^T \varphi_0(x),
\end{align*}
\]

where \(c_0, c_v, c_w \) are the DOFs, and \(b_{0u}, b_{0v}, \) and \(b_{0w} \) are the trial functions for the flexure model, presented in Appendix A. The five selected DOFs are:

\[
\begin{align*}
c_0 &= u_0, \\
c_v &= [u_v, \theta_v]^T, \\
c_w &= [u_w, \theta_w]^T.
\end{align*}
\]

The model of the square central plate is parameterized by the 20 DOFs which are the translations and rotations in each corner.

Fig. 4. The five DOF model of the piezoelectric flexure consists of three translational DOFs \(\{u_{0x}, u_{0y}, u_{0z}\} \) and two rotational DOFs \(\{\theta_{0u}, \theta_{0w}\} \).

Fig. 5. The model of the square central plate is parameterized by the 20 DOFs which are the translations and rotations in each corner.
a 2D problem utilizing Kirchhoff plate and plane stress kinematics [46]. The kinematic constraints on the displacement field of the plate are:

\[u_1 = \pi_0(x, y, t) - \frac{\partial \pi_0}{\partial x}, \]
\[u_2 = \pi_0(x, y, t) - \frac{\partial \pi_0}{\partial y}, \]
\[u_3 = \pi_0(x, y, t). \]

For these kinematics, there are three non-zero strain components:

\[\varepsilon_1 = \frac{\partial \pi_0}{\partial x} - \frac{1}{2} \frac{\partial^2 \pi_0}{\partial x^2}, \]
\[\varepsilon_2 = \frac{\partial \pi_0}{\partial y} - \frac{1}{2} \frac{\partial^2 \pi_0}{\partial y^2}, \]
\[\varepsilon_0 = \frac{\partial \pi_0}{\partial y} - 2 \frac{\partial^2 \pi_0}{\partial x \partial y} + \frac{\partial \pi_0}{\partial x}. \]

The material of the plate is considered to be isotropic and despite being formed from a piezoelectric ceramic, the piezoelectric effect is excluded as no voltage is applied to this section of the nanopositioner. Under these conditions, the constitutive equations of the plate are:

\[T = cS, \]
\[\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{66} \end{bmatrix} = \begin{bmatrix} E_{1} \\ E_{2} \\ E_{6} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}, \]
\[\begin{bmatrix} b_{1} \\ b_{2} \\ b_{u} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{12} \\ c_{66} \end{bmatrix} \begin{bmatrix} \gamma_{1} \\ \gamma_{2} \\ \gamma_{6} \end{bmatrix}, \]
\[\begin{bmatrix} \phi_{1} \\ \phi_{2} \\ \phi_{u} \end{bmatrix} = \begin{bmatrix} c_{1}^{T} \\ c_{2}^{T} \\ c_{u}^{T} \end{bmatrix}, \]
\[\begin{bmatrix} \pi_{1}(x, y, t) \\ \pi_{2}(x, y, t) \\ \pi_{u}(x, y, t) \end{bmatrix} = \begin{bmatrix} c_{1}^{T} b_{1} \\ c_{2}^{T} b_{1} \\ c_{u}^{T} b_{u} \end{bmatrix}. \]

The trial functions \(b_{1}, b_{u}, \) and \(b_{w} \) of the plate are presented in Appendix B. The motion of the stage is parameterized by 20 DOFs which are:

\[c_{u} = [u_1, u_2, u_3, u_4]^T, \]
\[c_{v} = [v_1, v_2, v_3, v_4]^T, \]
\[c_{w} = [w_1, \theta_{11}, \theta_{12}, ..., w_4, \theta_{14}, \theta_{y4}]^T, \]

where for each corner of the rectangular plate labeled \(i = 1, ..., 4, \) the DOFs \(u_i, v_i, \) and \(w_i \) are the displacements in the \(X, Y \) and \(Z \) axes, and the rotations \(\theta_{i} = \frac{\partial \theta_i}{\partial x} \) and \(\theta_{y} = \frac{\partial \theta_y}{\partial y}. \)

The displacement/strain fields, constitutive equations, and finite DOF solutions are substituted into the energy expression and Hamilton’s principle is evaluated for the following governing equations:

\[B_{uu} c_u + A_{uu} c_u + A_{uv} c_v = 0, \]
\[B_{uv} c_v + A_{uv} c_v + A_{ww} c_w = 0. \]

The coefficients of the system matrices are presented in Appendix D. These equations governing the behavior of the central plate contribute to the system equations presented in Section 3.4.

3.4. The assembled system

The governing equations for the piezoelectric flexures and central stage of the nanopositioner, derived in Section 3.2, are assembled into the system model. There are two independent governing equations for the nanopositioner, one for in-plane motion and one for out-of-plane motion. The two systems are assembled by applying kinematic constraints to the DOFs of the flexures and plate. These constraints are:

\[q_{ip}^{all} = T_{ip} q_{ip}, \]
\[q_{op}^{all} = T_{op} q_{op}, \]
\[q_{ip}^{all} = T_{ip} q_{ip}, \]
\[q_{op}^{all} = T_{op} q_{op}. \]

The 100 constraints used to form the matrices \(T_{ip} \) and \(T_{op} \) are presented in Appendix E. \(q_{ip}^{all} \) and \(q_{op}^{all} \) includes the DOFs of all the flexures and the plate and \(q_{ip} \) and \(q_{op} \) are the DOFs of the assembled systems:

\[q_{ip} = [u_{11}, ..., u_{i2}^{(20)}, u_{i1}^{(20)}, ..., u_{i4}^{(20)}]^T, \]
\[q_{op} = [u_{i1}, ..., u_{i4}, v_{i1}, ..., v_{i4}, w_{i1}, ..., w_{i4}, \theta_{i1}, ..., \theta_{i4}, \theta_{y1}, ..., \theta_{y4}]^T, \]
\[q_{op} = [w_{1}, \theta_{11}, \theta_{12}, ..., w_{4}, \theta_{14}, \theta_{y4}]^T, \]
\[q_{op} = [w_{1}, \theta_{11}, \theta_{12}, ..., w_{4}, \theta_{14}, \theta_{y4}]^T. \]

The superscript labels the DOFs for each flexure.

Using the mechanical constraints in (53) and (54), the differential equations from (28) to (32) and (50) to (52) for all flexures and the plate are assembled to give the characteristic differential equations of the nanopositioner:

\[M_{ip} \dot{q}_{ip} + \Phi_{ip} q_{ip} + P_{ip} \phi_{ip} = 0, \]
\[M_{op} \dot{q}_{op} + \Phi_{op} q_{op} + P_{op} \phi_{op} = 0. \]

Here, \(K_{ip} \) and \(K_{op} \) are the stiffness matrices, \(P_{ip} \) and \(P_{op} \) are the piezoelectric matrices, \(q_{ip} \) and \(q_{op} \) are the DOFs of all flexures and the plate, \(\Phi_{ip} \) and \(\Phi_{op} \) are the electrical DOFs for in-plane and out-of-plane motion.

3.5. Static analysis of the nanopositioner

The trial functions are evaluated to map the eight in-plane DOFs \(q_{ip} \) to the X axis translation \(u_{i1}, Y \) axis translation \(u_{i2}, \) and Z axis rotation \(\theta_{i3} \) of the center-point:

\[u_{c} = \frac{1}{4} (u_{11} + u_{22} + u_{33} + u_{44}), \]
\[u_{y} = \frac{1}{4} (v_{11} + v_{22} + v_{33} + v_{44}), \]
\[\theta_{c} = \frac{1}{80} (u_{11} + u_{22} - u_{33} - u_{44} - v_{11} + v_{22} + v_{33} - v_{44}). \]

The voltages used to induce in-plane motion of the center point are parameterized by the control voltages \(\phi_{inx}, \phi_{inm}, \) and \(\phi_{op} \) as outlined in Section 2. Equation (59) is solved for the in-plane DOFs for each
control voltage. The positioner’s X axis translation characteristic equation is:
\[u_x = 2L^3e_{31}T_y \frac{d_1}{5(\Delta E L^2 + 2E L_0^2)} \phi_{ux} \]
(64)

The mapping from \(\phi_{uy} \rightarrow u_y \) is equivalent to the above expression. The Z axis rotation characteristic equation is:
\[\theta_z = 2L^3e_{31}T_y (d_1 + d_2) \frac{E_a a^2}{10E_L L^2 + 30E_L(La + a^2)} \phi_{uz} + 10E_L L^2 + 30E_L(La + a^2) \]
(65)

For the out-of-plane system, the trial functions are evaluated to map the twelve out-of-plane DOFs \(q_{op} \), to the Z axis translation \(u_z \), X axis rotation \(\theta_x \), and Y axis rotation \(\theta_y \) of the center point:
\[u_z = \frac{1}{4} (w_1 + w_2 + w_3 + w_4) + \frac{1}{8} (\delta_{x1} - \delta_{x2} - \delta_{x3}) + \delta_{x4} + \delta_{y1} + \delta_{y2} - \delta_{y3} - \delta_{y4}, \]
(66)
\[\theta_x = \frac{1}{8a} (3w_1 + 3w_2 - 3w_3 - 3w_4 + \delta_{x1} - \delta_{x2}) + \delta_{x3} - \delta_{x4} + \delta_{y1} + \delta_{y2} + \delta_{y3} + \delta_{y4}, \]
(67)
\[\theta_y = \frac{1}{8a} (3w_1 - 3w_2 - 3w_3 + 3w_4 + \delta_{x1} + \delta_{x2}) + \delta_{x3} + \delta_{x4} + \delta_{y1} - \delta_{y2} + \delta_{y3} - \delta_{y4}. \]
(68)

The voltages used to induce out-of-plane motion of the center point are parameterized by the control voltages \(\phi_{ux}, \phi_{uy}, \) and \(\phi_{uz} \). The out-of-plane DOFs for the above equations are found by solving (60) for each control voltage. The positioner’s Z axis translation characteristic equation is:
\[u_z = \frac{15aL^3e_{31}(2d_1^2 + 2d_2^2 + 5L + 5a)}{4(5L_0^2 + 5L_0^2 + 150E_L L^2)} \phi_{uz} + 108E_L a^2 d_1^4 + 108E_L a^2 d_2^4 - 144E_L a^2 d_1^2 d_2^2 \]
(69)

For the out-of-plane rotations, after evaluating (60), the terms \(d_1^4, d_2^4, d_1^6, \) and \(d_2^6 \) are eliminated from the resulting expression as they are considered small due to \(d_1 \) and \(d_2 \) having an absolute value less than one. Therefore the positioner’s X axis rotational characteristic equation is:
\[\theta_x = \frac{5aL^3e_{31}(1_1 d_1^2 + 3L + 2a)}{16E_L L_0^2 (5L + 15a + 15a^2)} + 6a^2 (d_1^2 + d_2^2) + 120E_L^2 a^2 \]
(70)

This expression is equivalent for the mapping from \(\phi_{uy} \rightarrow \theta_y \).

3.6. Dynamic analysis of the nanopositioner

The lowest resonance frequencies have the most significant influence on the speed at which the nanopositioner can operate at. The lowest frequencies exist in the out-of-plane direction and modal analysis is performed on the system in (60) to determine both the frequencies and modes shapes, shown in Fig. 6.

The nanopositioner is soft in the out-of-plane direction and the first resonance frequency shifts when a load placed on the stage. By augmenting a fixed mass to the system in (60), the change in resonance frequency can be computed. Fig. 7 plots the change in the first resonance frequency for a load up to 100 g.

4. Finite-element-analysis

A finite-element (FE) model of the stage was constructed using ANSYS workbench. The displacement of all four edges are fixed. The piezoelectric properties for the stage are modeled using the ANSYS Piezo and MEMS Application Customization Toolkit (ACT) extension. The piezoelectric properties for PZT-5A are listed in Table 1. Each piezoelectric layer is polarized outwards along its thickness direction.

To obtain the displacement per unit voltage for \(u_{x/y/z} \) and \(\theta_{x/y/z} \) along the X, Y and Z axes, +1 V and −1 V are applied to the corresponding electrodes for each DOF as shown in Fig. 3. The respective displacements are obtained. Table 2 compares the simulated and analytical static gains of the stage.

Resonance frequencies of the stage were simulated using the modal analysis module of ANSYS. The first two modes of the monolithic stage are shown in Fig. 8. The first resonance frequency

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Comparison of the analytical, FE-simulated and experimental results.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Static gain</td>
</tr>
<tr>
<td></td>
<td>Analytical</td>
</tr>
<tr>
<td>X-axis translation (nm/V)</td>
<td>10.35</td>
</tr>
<tr>
<td>Y-axis translation (nm/V)</td>
<td>10.35</td>
</tr>
<tr>
<td>Z-axis translation (nm/V)</td>
<td>98.72</td>
</tr>
<tr>
<td>X-axis rotation (μrad/V)</td>
<td>1.05</td>
</tr>
<tr>
<td>Y-axis rotation (μrad/V)</td>
<td>1.05</td>
</tr>
<tr>
<td>Z-axis rotation (μrad/V)</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Fig. 7. The analytical, FEA and experimental change in the first resonance frequency with respect to the mass added to the central stage.

Fig. 6. The first three modes of the nanopositioner exist in the softer out-of-plane direction.
appears at 883.5 Hz, translating along the Z axis. The second and third mode is a rotational mode about the X and Y axis, occurs at 1960.7 Hz. To search for the lateral modes along the X and Y axes of the stage, the out-of-plane motions along the Z axis were constrained. The X and Y axis lateral mode occurs at 21.26 kHz. Simulated resonance frequencies are listed in Table 2 together with their analytical counterparts.

5. Experimental results

This section presents the experimental identification and characterization of the sensitivity, range, cross-coupling, and modal responses of the nanopositioner. The experimental setup consists of a nanopositioner mounted on a base as pictured in Fig. 10. The schematic of the experimental set-up is shown in Fig. 9. Here \(J \) is a transformation matrix that maps the five inputs that relate the translations and rotations to the eight specific electrode voltages. More information on the design of the transformation matrix can be found in [39]. The translational motion in each axis is measured using an MSA-100-3D Laser Doppler Vibrometer (Polytec, Germany). Rotational motions about the X and Y axis are measured using an FPS3010 Interferometer (Attocube, Germany) as pictured in Fig. 10. The sensing configuration allows measurements in five DOFs but rotation around the Z axis.

To evaluate the travel range, electrodes were driven with a 10-Hz sinusoidal voltage from −200 V to +200 V as shown in Fig. 3. The electrodes were driven by an in-house developed 8-channel ± 200 V amplifier. Note that +200 V is only 33% of the full displacement range and was chosen conservatively to ensure a safe operating range for the material. The measured translational motion is 26.5 \(\mu m \) in the Z axis, 6.22 \(\mu m \) in the X axis and 5.27 \(\mu m \) in the Y axis. The rotational motion is 600 \(\mu rad \) and 884 \(\mu rad \) about the X and Y axis respectively. The five-axis motions and their corresponding cross-couplings are measured and plotted in Fig. 13. It can be observed that the cross-coupling from \(\theta_x \rightarrow X \) is significant, at about 50% of the X axis travel range. Table 2 compares the analytical, FE-simulated and measured static gains of the monolithic stage. The difference between the predicted and experimental values is primarily due to the uncertainty of the piezoelectric coefficient \(d_{31} \) [1]. Other causes of discrepancy include changes in mechanical quality factor, device dimensions and electrical coupling [47].

The hysteresis exhibited by the stage is plotted in Fig. 11. As only 33% of the full range voltage is applied to the system, the maximum hysteresis error measured in the Y axis is about 6%. This is half of the typical PZT-5A hysteresis error which is 14% of the full-scale displacement [48]. In the Z axis, the hysteresis exhibited by the stage is only 2%. The improvement in the hysteresis response is due to the
push-pull configuration of the top and bottom electrodes which results in partial cancellation of the hysteresis between the two layers. The creep exhibited by the stage in response to a step change in voltage is plotted in Fig. 12. The stage exhibits a creep of 18% after a period of 100 s Fig. 13.

The frequency responses of the nanopositioning stage were measured using the MSA-100 laser vibrometer (Polytec, Germany). A band-limited pseudo random noise input of amplitude 100 mVpk within the frequency range of 100 Hz to 4 kHz was applied to drive each axis. Fig. 15 shows the measured frequency responses of the
stage. Frequency responses of the translational motion in the X and Y axis exhibit a relatively constant response over a wide frequency range. However, the maximum useful frequency is limited by the first resonance mode in the Z axis occurring at 845 Hz. The measured rotational resonant mode for both θ_x and θ_y appears at 1850 Hz. The measured resonance frequencies are in close agreement with that of the FE simulations. The effect of the load on the first resonance mode for three masses of 5, 10 and 20 g is experimentally validated. Fig. 7 shows a comparison between the simulated and experimental frequency shift with respect to the mass added to the stage. The two out-of-plane mode shapes observed from the FE results are experimentally validated and shown in Fig. 16. It can be observed that these modes are the dominant resonant peaks limiting the bandwidth of the system in Fig. 15.

The precision of this stage is limited by the amplifier noise voltage which is approximately $1.25 \, \mu \text{V/Hz}$. Therefore, the spectral density and standard deviation of the positioning noise can be determined from the frequency responses in Fig. 15 and Eq. (3) in [49]. The noise spectral density in the X and Y axis is 0.013 pm/$\sqrt{\text{Hz}}$ or 32 pm (peak-to-peak). Due to the higher sensitivity and lower resonance frequency, the Z-axis noise is significantly higher at 0.12 pm/$\sqrt{\text{Hz}}$ or 310 pm (peak-to-peak). These noise figures are similar to piezoelectric tube with the same range.

Since the stage is an open-loop design, the accuracy is limited by hysteresis, which is 6% of the full-scale range in X and Y, and 14% in Z. Therefore, applications requiring high accuracy (<1% error) would require position sensors and closed-loop control.

6. Atomic force microscope imaging

To demonstrate the application of the proposed monolithic nanopositioner, the experimental setup in Fig. 14 was used to obtain a $5 \mu \text{m} \times 6 \mu \text{m}$ image of a Budget Sensors HG-100MG calibration grating. The profile height of the grating is 110 ± 5 nm. The image was obtained using a contact mode cantilever (ContAl-G, Budget-Sensors, Bulgaria) with a resonance frequency of 13 kHz and a nominal stiffness of 0.2 N/m. The grating was imaged in constant-force contact-mode using a Nanosurf Easy Scan 2 at. force microscope (Switzerland) with a 20 nN force setpoint Fig. 15Fig. 16.
Fig. 13. The measured five-axis motion and cross-coupling in response to a 10-Hz sinusoidal input from −200 V to +200 V applied to each axis.

Fig. 14. The schematic of the open-loop AFM imaging using the proposed nanopositioner. The X and Y axis of the nanopositioner are driven in open-loop to create a raster scan. The Z axis controller of the AFM head (Easy Scan 2, Nanosurf, Switzerland) is used to detect the cantilever deflection in the vertical position to create the topography of the sample.
To move the grating in a raster pattern, the X axis was driven with a 0.5 Hz triangular waveform, and the Y axis was driven with a ramp signal. Note that the nanopositioner was driven in open-loop without any feedforward or feedback control action. The Z axis controller of the Nanosurf AFM was used to detect the cantilever deflection in the vertical position. The deflection output of the AFM was recorded and used to construct the image in Fig. 17. The image processing included the removal of the plane from image, which
Appendix A. Flexure model: trial functions

The beam is parameterized by five mechanical DOFs. The mechanical DOFs are translations and rotations at the free end of the beam (x=L). They are the axial extension $c_{\varepsilon}=u_x$, the in-plane deflection $c_{\gamma_i}=u_y$, the in-plane rotation $c_{\varepsilon_i}=\theta_y$, the out-of-plane deflection $c_{u_i}=w_y$, and the out-of-plane rotation $c_{w_i}=\theta_w$. A fixed boundary condition at the other end of the beam enforces zero translation and rotation at x=0. Trial functions compliant to the continuity requirements of the variational formulation and the boundary conditions at x=0 are [45]:

$$\beta_{u_1}(x) = \frac{x}{L},$$

$$\beta_{u_2}(x) = \beta_{w_1}(x) = \frac{3x^2}{L^2} - \frac{2x^3}{L^3},$$

$$\beta_{u_2}(x) = \beta_{w_2}(x) = \frac{x^2}{L} - \frac{x^3}{L^2}.$$

B. Plate model: trial functions

The in-plane motion of the plate is parameterized by eight DOFs. They are the translations of the four corners in the x-direction $c_{w_i}=u_i$, and the translation of the four corners in the y-direction $c_{v_i}=v_i$. The index i refers to each corner: (1) the SW corner, (2) the SE corner, (3) the NE corner, and (4) the NW corner. The trial functions for the in-plane displacements are [46]:

$$b_{w_i}(x, y) = b_{v_i}(x, y) = \frac{1}{4} \left(1 + x_i \frac{x}{a} \right) \left(1 + y_i \frac{y}{b} \right).$$

where b is the length of the plate in the y-direction, a is the length of the plate in the x-direction. In this work $a=b$. The (x_i, y_i) values associated with each corner are:

$$(x_1, y_1) = (-1, -1).$$

$$(x_2, y_2) = (1, -1).$$

$$(x_3, y_3) = (1, 1).$$

$$(x_4, y_4) = (-1, 1).$$

The out-of-plane motion plate model is parameterized by 12 degrees-of-freedom given by:

$$c_w = [w_1, \theta_1, \theta_3, w_2, \theta_2, \theta_4, w_3, \theta_3, w_4, \theta_4]^T.$$

The degrees of freedom are the deflection w_i at the corners, and rotations at the corners $\theta_{x,i}$, $\theta_{y,i}$. The rotations are defined as:

$$\theta_x = \frac{\partial w_0}{\partial x}, \quad \theta_y = \frac{\partial w_0}{\partial y}.$$

The trial functions for the plate are [45]:

$$b_{w_i} = \frac{1}{8} \left(1 + x_i \frac{x}{a} \right) \left(1 + y_i \frac{y}{b} \right) \left(2 + x_i \frac{x}{a} + y_i \frac{y}{b} - \frac{x^2}{a^2} - \frac{y^2}{b^2} \right).$$
\[b_{w,i+1} = \frac{1}{8} \left(x_i \frac{y_i}{a} - 1 \right) \left(1 + y_i \frac{y_i}{b} \right) \left(1 + x_i \frac{x_i}{a} \right)^2 \]
(82)

\[b_{w,i+2} = \frac{1}{8} \left(y_i \frac{x_i}{b} - 1 \right) \left(1 + x_i \frac{x_i}{a} \right) \left(1 + y_i \frac{y_i}{b} \right)^2 \]
(83)

for each corner \(i=1, 2, 3, 4 \).

C. Flexure model: matrix coefficients

Outline here are coefficients of the matrices in the system of equations in (28) to (32). The coefficients of the stiffness matrices in the equations are:

\[K_{uu,ij} = EA \int_0^l \frac{\partial \phi_{ui}}{\partial x} \frac{\partial \phi_{uj}}{\partial x} \, dx, \]
(84)

\[K_{uv,ij} = El \int_0^l \frac{\partial^2 \phi_{ui}}{\partial x^2} \frac{\partial \phi_{uj}}{\partial y} \, dx, \]
(85)

\[K_{ww,ij} = El \int_0^l \frac{\partial^2 \phi_{ui}}{\partial y^2} \frac{\partial \phi_{uj}}{\partial y} \, dx. \]
(86)

The coefficients of the piezoelectric matrices are:

\[K_{y_k} = -\frac{t \varepsilon_{31} \partial \phi_{ui}}{\partial x} \, dx, \]
(87)

\[K_{y_m} = -\frac{1}{4} \varepsilon_{31} A \int_0^l \frac{\partial^2 \phi_{ui}}{\partial x^2} \, dx. \]
(88)

The capacitance matrices are comprised of a single element and are given by:

\[K_{t_k} = -\frac{\varepsilon_{31} \partial \phi_{ui}}{t_z}, \]
(89)

\[K_{t_m} = -\frac{1}{4} \varepsilon_{31} A \int_0^l \frac{\partial^2 \phi_{ui}}{\partial x^2} \, dx. \]
(90)

The mass matrix coefficients are:

\[M_{uu,ij} = \rho A \int_0^l \beta_{ui} \beta_{uj} \, dx, \]
(91)

\[M_{uv,ij} = \rho A \int_0^l \beta_{ui} \beta_{uj} \, dx, \]
(92)

\[M_{ww,ij} = \rho A \int_0^l \beta_{ui} \beta_{uj} \, dx. \]
(93)

D. Plate model: matrix coefficients

The coefficients of the stiffness matrices are:

\[A_{uu,ij} = \epsilon_1 t_z \int_A \frac{\partial b_{ui}}{\partial x} \frac{\partial b_{uj}}{\partial x} \, dA + \epsilon_6 t_z \int_A \frac{\partial b_{ui}}{\partial y} \frac{\partial b_{uj}}{\partial y} \, dA \]
(94)

\[A_{uv,ij} = \epsilon_1 t_z \int_A \frac{\partial b_{ui}}{\partial y} \frac{\partial b_{uj}}{\partial x} \, dA + \epsilon_6 t_z \int_A \frac{\partial b_{ui}}{\partial x} \frac{\partial b_{uj}}{\partial y} \, dA \]
(95)

\[A_{ww,ij} = \epsilon_1 t_z \int_A \frac{\partial^2 b_{ui}}{\partial x^2} \frac{\partial^2 b_{uj}}{\partial x^2} \, dA + \epsilon_6 t_z \int_A \frac{\partial^2 b_{ui}}{\partial y^2} \frac{\partial^2 b_{uj}}{\partial y^2} \, dA \]
(97)

\[A_{uv,ij} = \epsilon_1 t_z \int_A \frac{\partial^2 b_{ui}}{\partial x \partial y} \frac{\partial^2 b_{uj}}{\partial x \partial y} \, dA + \epsilon_6 t_z \int_A \frac{\partial^2 b_{ui}}{\partial y \partial x} \frac{\partial^2 b_{uj}}{\partial y \partial x} \, dA \]
(98)
The coefficients of the mass matrices are:

\[B_{uu,ij} = \rho t^2 \int_A b_{uu} \, dA, \]

\[B_{uv,ij} = \rho t^2 \int_A b_{uv} \, dA, \]

\[B_{vw,ij} = \rho t^2 \int_A b_{vw} \, dA + \frac{\alpha^2}{12} \int_A \frac{\partial b_{uv}}{\partial x} \, dA + \frac{\alpha^2}{12} \int_A \frac{\partial b_{uw}}{\partial y} \, dA. \]

The rotary inertia terms (those containing \(t^2 \)) are considered insignificant in this work.

E. Kinematic constraints

Kinematic constraints are used to combine the differential equations for the 20 flexures with those of central plate to produce the governing equations of the system. Constraints exist on the boundary between the flexures and the central plate. First, the following rotations are defined to help define the constraints:

\[\theta_2(x, y) = \frac{1}{2} \left(\frac{\partial \sigma_{xx}}{\partial x} - \frac{\partial \sigma_{yy}}{\partial y} \right), \]

\[\theta_3(x, y) = \frac{\partial \sigma_{xx}}{\partial x}, \]

\[\theta_4(x, y) = \frac{\partial \sigma_{yy}}{\partial y}. \]

Each flexure introduces 5 constraint equations which are listed in Table 3 for each flexure referenced by the index \(i \). The terms on the left-hand side of these constraints are the flexure DOFs which are components of the vectors \(q_{ip} \) and \(q_{ip} \), while the right-hand side of these constraints are a function of the plate DOFs which are components of \(q_{ip} \) and \(q_{ip} \). By evaluating all these constraints the matrix equations in (53) and (54) are formed.

Table 3

<table>
<thead>
<tr>
<th>(i = 1 \ldots 5)</th>
<th>(i = 6 \ldots 10)</th>
<th>(i = 11 \ldots 15)</th>
<th>(i = 16 \ldots 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_{ij}^0 = \rho)</td>
<td>(u_{ij}^0 = -\rho)</td>
<td>(u_{ij}^0 = -\rho)</td>
<td>(u_{ij}^0 = \rho)</td>
</tr>
<tr>
<td>(u_{ij}^1 = \rho)</td>
<td>(u_{ij}^1 = -\rho)</td>
<td>(u_{ij}^1 = -\rho)</td>
<td>(u_{ij}^1 = \rho)</td>
</tr>
<tr>
<td>(v_{ij}^0 = \rho)</td>
<td>(v_{ij}^0 = -\rho)</td>
<td>(v_{ij}^0 = -\rho)</td>
<td>(v_{ij}^0 = \rho)</td>
</tr>
<tr>
<td>(d_{ij}^0 = -\theta_x)</td>
<td>(d_{ij}^0 = 0)</td>
<td>(d_{ij}^0 = 0)</td>
<td>(d_{ij}^0 = -\theta_x)</td>
</tr>
<tr>
<td>(d_{ij}^1 = 0)</td>
<td>(d_{ij}^1 = \theta_x)</td>
<td>(d_{ij}^1 = \theta_x)</td>
<td>(d_{ij}^1 = 0)</td>
</tr>
</tbody>
</table>

References

