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a b s t r a c t   

The article describes the design and modeling of a five-axis monolithic nanopositioning stage constructed 
from a bimorph piezoelectric sheet. Six-axis motion is also possible but requires 16 amplifier channels 
rather than 8. The nanopositioner is ultra low profile with a thickness of 1 mm. Analytical modeling and 
finite-element-analysis accurately predict the experimental performance. The stage was conservatively 
driven with 33% of the maximum voltage, which resulted in an X and Y travel range of 6.22 μm and 5.27 μm 
respectively; a Z travel range of 26.5 μm; and a rotational motion of 600 μrad and 884 μrad about the X and 
Y axis respectively. The first resonance frequency occurs at 883 Hz in the Z axis. Experimental atomic force 
microscopy is performed using the proposed device as a sample scanner. 

© 2021 Elsevier B.V. All rights reserved.    

1. Introduction 

The rapid growth in nanotechnology has increased the demand 
for ultra-precision multi-axis nanopositioning systems [1–3]. In the 
modern era of nanosystems, many applications require positioning 
capabilities in more than three degrees-of-freedom (DOF). Multi- 
axis nanopositioners have enabled a wide range of applications in 
scanning microscopy [4–7], biotechnology [8], mask/wafer posi-
tioning [9,10], nanofabrication [9,11], cell surgery [12] and precision 
optics [13–16]. 

Piezoelectric tube scanners were the first three-DOF nanoposi-
tioners used in scanning tunneling microscopes [17]. The low cost 
and simplicity of these monolithic devices have made them popular 
in applications such as atomic force microscopy [18–20], fiber-optic 
scanning [21] and endoscopic imaging [22]. However, the tube 
scanner needs to be long and thin to achieve large displacement. For 
example, the PT230.94 tube scanner from Physik Instrumente has a 
length of 30 mm, an outer diameter of 3.2 mm and a thickness of 
0.5 mm in order to achieve a travel range of 70 μm. The high-aspect 
ratio in length and diameter results in low resonance frequencies 
and high cross-coupling between lateral and vertical axes [23]. To 
mitigate the above shortfalls, flexure-based nanopositioning systems 
are used to replace piezoelectric tube scanners in atomic force mi-
croscopes [24–27,28,29]. 

To add rotational positioning capabilities, flexure-based hexapod 
nanopositioners were introduced [30–33,34]. These devices employ 
compliant mechanisms composed of metal flexures to create multi- 
axis linear and rotational displacement. There are a number of 
drawbacks associated with these devices including relatively large 
size, complex kinematics, and high cost. A significant advantage of 
five- and six-axis stages is that they are able to compensate of errors 
due to cross-coupling. For example, a three axis XYZ stage produces 
non-zero parasitic rotation that is related to the deflection of the 
stage. Although it can be minimized by design, high precision ap-
plications such as wafer scanning [9] require active compensation 
requiring six DOF actuation. 

To provide a more compact and lower cost alternative to piezo-
electric tubes and flexure-based designs, a new class of monolithic 
nanopositioners constructed from a single piezoelectric sheet was 
proposed in [1] and [35,36]. In reference [1], a two-DOF monolithic 
nanopositioner is constructed by removing parts of a piezoelectric 
sheet to create active flexures that provide guidance and create X 
and Y axis motion. The device in [1] has an extremely low profile of 
only 0.5 mm which enables a new range of applications in atomic 
force microscopy, and particularly, scanning electron microscopy 
where the load-lock area may be less than 5 mm in height [37]. 
Sensing and control methods for the two-DOF stage in [1] were re-
ported in [38] and [39]. 

Compared to other five- and six-axis nanopositioners, which are 
usually based on the hexapod principle [30–33,34] the proposed 
device is much smaller, especially in vertical height, but has a lower 
travel range, lower load capacity and less accuracy. For example, the 
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six-axis stage in [34] has a range of 80 μm in the X, Y, Z directions, 
and 60 μrad of rotation in three axes, with dimensions of 264 mm in 
diameter and 148 mm in height. The proposed device provides 6 μm 
deflection in the X and Y axis, 26 μm in the Z axis, and 700 μrad of 
rotation about the X and Y axis, with dimensions of 63 mm width 
and 1 mm height, which is less than 1% the height of [34]. The 
specifications and dimensions of other recently presented six-axis 
stages are listed in Table IV of [34]. Compared to other work, the 
proposed device is suited to low-accuracy applications that require a 
vertical height of less than a few millimeters, a load capacity of less 
than 10 g, and an X and Y axis deflection of less than 10 μm. Although 
the proposed design has a much lower stiffness and load capacity 
than other devices, this permits a much larger rotation about the X 
and Y axis (about 10× greater than [34]). 

1.1. Contribution 

This work extends the previous three-axis monolithic nanopo-
sitioners to five or six degrees-of-freedom by utilizing a two layer 
piezoelectric sheet to create active flexures that provide in-plane 
and out-of-plane motion. This proposed mechanical design utilizes 
20 active flexures to develop translation and rotation in, and about, 
the X, Y and Z axes, respectively. As illustrated in Figs. 1 and 2, each 
actuator comprises a bimorph piezoelectric beam with a grounded 
middle layer, and specific voltages applied to the top and bottom 
electrodes to create in-plane and out-of-plane motion. 

A graphical comparison of current and previous designs is shown 
in Fig. 2, including the unimorph parallel-kinematic design (top), 
serial kinematic design (middle), and the topic of this work 
(bottom). Other related work include closed-loop [38] and feedfor-
ward control [39] of extension actuators. 

A preliminary version of this work was presented at the 
International Conference on Manipulation, Automation and Robotics 
at Small Scale (MARSS) [40]. This work used the constitutive pie-
zoelectric equations, and Euler-Bernoulli beam theory to derive a 
static model for only five degrees-of-freedom due to the limitations 
of the modeling method. The effective stiffness and mass of the five 

DOFs were derived to estimate the corresponding resonance fre-
quencies. 

Compared to [40], the present work uses a combination of con-
stitutive piezoelectric equations, Euler-Bernoulli beam theory, and 
Hamilton’s principle to fully model the statics and dynamics of the 
nanopositioner in all six DOFs. In addition, the effect of the load on 
the nanopositioner’s first out-of-plane resonance frequency has 
been modeled. This work also extends on [40] with an experimental 
identification of modal frequencies and shapes, and includes appli-
cation to atomic force microscopy imaging. 

The remainder of the paper precedes as follows. Section 2 de-
scribes the design of the monolithic stage and the actuating prin-
ciples. Section 3 presents a model of the nanopositioner which is 
used to derive analytical static rotational and translational gains, 
resonance frequencies and mode shapes. Finite-element simulations 
are presented in Section 4, followed by experimental results in  
Section 5. Section 6 demonstrates the application of the proposed 
nanopositioner to atomic force microscope imaging. 

2. Nanopositioner design and operation 

The monolithic nanopositioner is illustrated in Fig. 1. The nano-
positioner is fabricated from a bimorph piezoelectric sheet of PZT-5A 
(PiezoSystems Inc, USA). The bimorph (two-layer) sheet has two 
external and one internal electrode, which provides the ability to 
extend and bend. The mechanical and electrode features were cre-
ated by subtractive ultrasonic machining. The flexures drive a central 
platform with length 2a. Each flexure is indexed from 1 to 20 and is 
of identical length L and width ty. The thickness of the piezoelectric 
sheet is tz. The dimensions di and do are introduced to parameterize 
the location at which the flexure is attached to the central platform. 
Dimensions and material properties of the bimorph nanopositioner 
are given in Table 1. The stage dimensions were chosen to maximize 
the X and Y axis travel range, which is achieved by maximizing the 
flexure length. It is desirable to have a large number of flexures with 
a minimum of space between each flexure. The thinnest slot that 
could be cut by ultrasonic machining was 1 mm, which resulted in 
five flexures per side. The other dimensions are determined by the 
size of the sheet and central platform, which was 20×20 mm. 

The actuating principle for generating six-axis motion is shown 
in Fig. 3. Knowing that each layer is outwardly poled with the middle 
layer grounded, the same voltage applied to the top and bottom 
surface will cause the beam to expand or contract axially and dis-
place the central platform in-plane. When voltages of the opposite 
sign are applied to the top and bottom surface, the beam bends and 
displaces the central stage out-of-plane. 

To obtain the motion in Fig. 3 a number of independent voltage 
amplifiers are required. To actuate any single axis, only two amplifier 
channels are required. To actuate two axes simultaneously (except 
θz), four amplifier channels are required. To actuate the X, Y, and Z 
axis simultaneously, 8 amplifier channels are required. This config-
uration can also simultaneously actuate the θx and θy axes to achieve 
five-axis motion. However, to obtain a combination of θz and any 
other axis, 16 amplifier channels are required, which is considered to 
be impractical. Therefore, the proposed design is primarily suited to 
five-axis motion (and eight amplifier channels). Although rotation 
around the Z-axis is also possible, this is not experimentally tested in 
the remainder of the article. 

Electrical constraints are applied to the 40 electrodes (20 flexures 
with two electrodes) to actuate the six DOFs of the nanopositioner. 
Let i

1
( ) and i

2
( ) be the voltages of the top and bottom electrode of the 

ith flexure. To separate in-plane and out-of-plane motion, the elec-
trode voltages are parameterized in terms of a common mode cm

i( )

and a differential voltage d
i( ) as: Fig. 1. Dimensions of piezoelectric stage, where di and do are dimensionless fractions 

of the half width a. 
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these voltages are grouped into in-plane and out-of-plane electrical 
DOFs as: 

= …[ , , ] ,ip cm cm
T(1) (20)

(3)  

= …[ , , ] .op d d
T(1) (20)

(4) 

For the six DOFs of the nanopositioner, six control voltages are in-
troduced to parameterize the electrode voltages. They are the con-
trol voltages for X axis translation ϕux, Y axis translation ϕuy, Z axis 
rotation ϕθz, Z axis translation ϕuz, X axis rotation ϕθx, and Y axis 
rotation ϕθy. Fig. 3 diagrammatically shows the relationship between 
the control voltages and the electrode voltages for each DOF of the 
nanopositioner. 

3. Finite DOF nanopositioner model 

This section presents the derivation of a 20 degree-of-freedom 
(DOF) model for the nanopositioner. Firstly, the fundamental prin-
ciples which govern the dynamics of piezoelectric materials are in-
troduced in Section 3.1. Then, a finite DOF model for each of the 

piezoelectric flexures and the central stage is derived in Section 3.2 
and Section 3.3 respectively. In Section 3.4, the finite DOF models of 
the individual components are assembled into a single system using 
kinematic constraints. The final model relates the applied voltages to 
a set of mechanical DOFs which parameterize the deflection, 
bending and translation of the stage. In Sections 3.5 and 3.6 the 
model is used to derive analytical static rotational and translational 
gains, resonance frequencies and mode shapes. 

3.1. Fundamental physical principles 

Hamilton’s principle is a fundamental variational principle from 
which the mechanics of a physical system can be derived. This work 
analyzes the dynamics of a piezoelectric structure in response to 
external electrical work. For this class of problem Hamilton’s prin-
ciple is expressed as [41–44,45]. 

=T H V dt 0.
t

t

1

2

(5) 

T is the kinetic energy, H is the enthalpy, V is the potential energy of 
the externally applied charges, and δ is the variational operator [45]. 
The energies are formulated as: 

=T u u dV
1
2

,T
(6)  

=H T S D E dV
1
2

,T T
(7)  

=V q dV . (8) 

The variables are: the displacement field u, the strain field S, the 
stress field T, the electric field E, the electric displacement D, the 
charge distribution q, the electric potential ϕ, the material density ρ, 
and the domain of the structure Ω. The behavior of the piezoelectric 
material is described by the constitutive equations [44]: 

=T cS e E,T (9)  

= +D eS E, (10) 

Table 1 
Dimensions and material properties of the bimorph stage.     

Description Parameter Value  

Thickness of a single piezoelectric layer, mm tp 0.5 
Thickness of the bimorph sheet, mm tz 1.0 
Flexure length, mm L 20.5 
Half-length of platform, mm a 9.5 
Width of actuator beam, mm ty 3 
Poisson’s ratio v 0.35 
Young’s modulus, GPa cE 66 
Density, kg/m3 ρ 7800 
Piezoelectric constant, pm/V d31 -190 
Flexure location 1 di 0.3889 
Flexure location 2 do 0.8333 

Fig. 3. The actuation scheme for the nanopositioner to control motion in 6 DOFs. A positive applied voltage is shown in red while a negative voltage is shown in blue. The voltages 
for each actuation mode are also shown, for example ϕθy represents the control voltages required to create rotation around the Y axis, and ϕuz represents the control voltages 
required to create translation in the Z axis. 

Fig. 2. The diagram of piezoelectric stage showing the dimension parameters.  
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where c are the elastic moduli, e are the piezoelectric coefficients, 
and ε are the dielectric permittivities. 

3.2. Piezoelectric flexure dynamics 

Using the fundamental principles from Section 3.1, this section 
outlines the derivation of a 5-DOF model of the piezoelectric flexure 
shown in Fig. 4. Euler-Bernoulli beam dynamics model the in-plane 
and out-of-plane deflections of the flexure, and bar dynamics model 
the extension. Kinematic constraints on the displacement field 

=u u u u[ , , ]T
1 2 3 of a flexure are [45]: 

=u x y z u x y
v
x

z
w
x

( , , ) ( ) ,1 0
0 0

(11)  

=u x y z v x( , , ) ( ),2 0 (12)  

=u x y z w x( , , ) ( ).3 0 (13) 

Here the displacement field is parameterized in terms of the one- 
dimensional variables: the out-of-plane deflection w0, the in-plane 
deflection v0, and the axial displacement u0. There is only one non- 
zero strain component associated with these kinematics: 

=S
u
x

y
v

x
z

w
x

2
2

2
2

.1
0 0 0

(14) 

The electric field needs to be parameterized in terms of the applied 
voltages. A parallel plate capacitive structure is assumed. The po-
larization vector of the two bimorph layers point outward. The 
electric field has one non-zero component given by: 

=
<

E x y z
t z

t z
( , , )

2 for 0

2 for 0
,

z

z
3

1

2 (15) 

where ϕ1 and ϕ2 are the voltages applied to the two electrodes, and 
tz is the thickness of the flexure in the Z direction. As per Section 2, 
the voltages are parameterized in terms of a common mode ϕcm and 
a differential voltage ϕd: 

= 1
2

,cm d1 (16)  

= + 1
2

.cm d2 (17) 

The charges q1 and q2 associated with the voltages ϕ1 and ϕ2 are also 
expressed in terms of a common-mode charge qcm and a differential 
change qd: 

=q q q
1
2

,cm d1 (18)  

= +q q q
1
2

.cm d2 (19) 

Since there is only a single non-zero component of both the strain 
field and the electric field, the constituent equations of the piezo-
electric material from (9) and (10) simplify to: 

=T ES e E ,1 1 31 3 (20)  

= +D e E ,3 31 33 3 (21) 

where E is Young’s modulus, e31 is the piezoelectric coefficient, and 
ε33 is the dielectric permittivity. Finally, to produce a finite DOF model 
it is assumed the solutions are a linear combination of trial functions: 

=u x t c t x( , ) ( ) ( ),u
T

u0 (22)  

=v x t c t x( , ) ( ) ( ),v
T

v0 (23)  

=w x t c t x( , ) ( ) ( ),w
T

w0 (24) 

where cu, cv, and cw are the DOFs, and bu, bv, and bw are the trial 
functions for the flexure model, presented in Appendix A. The five 
selected DOFs are: 

=c u ,u u (25)  

=c u[ , ] ,v v v
T (26)  

=c u[ , ] ,w w w
T (27) 

where uu, uv, and uw are the deflections of the tip of the flexure in 
axial, in-plane and out-of-plane directions, and θv and θw is the ro-
tation of the tip in the in-plane and out-of-plane directions. To derive 
the governing differential equations, (14) to (15) and (20)–(24) are 
used to evaluate the energy expressions in (6)–(8). Then Hamilton’s 
principle in (5) is evaluated resulting in five differential equations that 
describe the motion of the piezoelectric flexure: 

+ + =M c K c K¨ 0,uu u uu u u cm (28)  

+ =K c K q2 ,u
T

u
cm

cm cm (29)  

+ =M c K c¨ 0,vv v vv v (30)  

+ + =M c K c K¨ 0,ww w ww w w d (31)  

+ =K c K q
1
2

.w
T

u
d

d d (32) 

The coefficients of the system matrices are presented in Appendix C. 
Each of the 20 flexures is governed by these differential equations 
which form part of the full model presented in Section 3.4. 

3.3. Plate dynamics 

In addition to the flexures, the solid mechanics of the central stage 
needs to be modeled to accurately account for the dynamics of the 
nanopositioner. The central stage, shown in Fig. 5 is parameterized as 

Fig. 4. The five DOF model of the piezoelectric flexure consists of three translational 
DOFs (uu, uv, uw) and two rotational DOFs (θv, θw). 

Fig. 5. The model of the square central plate is parameterized by the 20 DOFs which 
are the translations and rotations in each corner. 
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a 2D problem utilizing Kirchhoff plate and plane stress kinematics  
[46]. The kinematic constraints on the displacement field of the 
plate are: 

=u u x y t z
w
x

( , , ) ,1 0
0

(33)  

=u v x y t z
w
y

( , , ) ,2 0
0

(34)  

=u w x y t( , , ).3 0 (35) 

For these kinematics, there are three non-zero strain components: 

=S
u
x

z
w
x

2
2

,1
0 0

(36)  

=S
v
y

z
w
y

2
2

,2
0 0

(37)  

= +S
u
y

z
w

x
y

v
x

2
2
2

.6
0 0 0

(38) 

The material of the plate is considered to be isotropic and despite 
being formed from a piezoelectric ceramic, the piezoelectric effect is 
excluded as no voltage is applied to this section of the nanopositioner. 
Under these conditions, the constitutive equations of the plate are: 

=T cS, (39)  

=
T
T
T

c c
c c

c

S
S
S

0
0

0 0
,

1

2

6

11 12

12 11

66

1

2

6 (40) 

where the elastic moduli are a function of Young’s Modulus E and 
Poisson’s Ratio ν: 

=c
E

1
,11 2 (41)  

=c
E

1
,12 2 (42)  

=
+

c
E

2(1 )
.66

(43) 

To form a finite DOF model, solutions for u0, v0, and w0 of the fol-
lowing form are considered: 

=u x y t c b( , , ) ,u
T

u0 (44)  

=v x y t c b( , , ) ,v
T

v0 (45)  

=w x y t c b( , , ) .w
T

w0 (46) 

The trial functions bu, bv, and bw of the plate are presented in  
Appendix B. The motion of the stage is parameterized by 20 DOFs 
which are: 

=c u u u u[ , , , ] ,u
T

1 2 3 4 (47)  

=c v v v v[ , , , ] ,v
T

1 2 3 4 (48)  

= …c w w[ , , , , , , ] ,w x y x y
T

1 1 1 4 4 4 (49) 

where for each corner of the rectangular plate labeled i=1, …, 4, the 
DOFs ui, vi, and wi are the displacement in the X, Y and Z axes, and the 
rotations =x

w
x
0 and =y

w
y
0 . 

The displacement/strain fields, constitutive equations, and finite 
DOF solutions are substituted into the energy expression and 
Hamilton’s principle is evaluated for the following governing equa-
tions: 

+ + =B c A c A c¨ 0,uu u uu u uv v (50)  

+ + =B c A c A c¨ 0,vv v uv
T

u vv v (51)  

+ =B c A c¨ 0.ww w ww w (52) 

The coefficients of the system matrices are presented in Appendix D. 
These equations governing the behavior of the central plate con-
tribute to the system equations presented in Section 3.4. 

3.4. The assembled system 

The governing equations for the piezoelectric flexures and central 
stage of the nanopositioner, derived in Section 3.2, are assembled 
into the system model. There are two independent governing 
equations for the nanopositioner, one for in-plane motion and one 
for out-of-plane motion. The two systems are assembled by applying 
kinematic constraints to the DOFs of the flexures and plate. These 
constraints are: 

=q T q ,ip
all

ip ip (53)  

=q T q .op
all

op op (54) 

The 100 constraints used to form the matrices Tip and Top are pre-
sented in Appendix E. qip

all and qop
all includes the DOFs of all the flex-

ures and the plate and qip and qop are the DOFs of the assembled 
systems: 

= … …

… … …

q u u u u

u u v v

[ , , , , , ,]

, , , , , , , , ] ,

ip
all

u u v v

v v
T

(1) (20) (1) (20)

(1) (20)
1 4 1 4 (55)  

= … …q u u v v[ , , , , , ] .ip
T

1 4 1 4 (56)  

= … …

…

q u u

w w

[ , , , , , ,]

, , , , , , ] ,
op
all

w w w w

x y x y
T

(1) (20) (1) (20)

1 1 1 4 4 4 (57)  

= …q w w[ , , , , , , ] ,op x y x y
T

1 1 1 4 4 4 (58) 

The superscript labels the DOFs for each flexure. 
Using the mechanical constraints in (53) and (54), the differential 

equations from (28) to (32) and (50) to (52) for all flexures and the 
plate are assembled to give the characteristic differential equations 
of the nanopositioner: 

+ + =M q K q P¨ 0,ip ip ip ip ip ip (59)  

+ + =M q K q P¨ 0.op op op op op op (60) 

Here, Kip and Kop are the stiffness matrices, Pip and Pop are the pie-
zoelectric matrices, qip and qop are the mechanical DOFs, Mip and Mop 

are the mass matrices, and ϕip and ϕop are the electrical DOFs for in- 
plane and out-of-plane. 

3.5. Static analysis of the nanopositioner 

The trial functions are evaluated to map the eight in-plane DOFs 
qip to the X axis translation ux, Y axis translation uy, and Z axis ro-
tation θz of the center-point: 

= + + +u u u u u
1
4

( ),x 1 2 3 4 (61)  

= + + +u v v v v
1
4

( ),y 1 2 3 4 (62)  

= + + +
a

u u u u v v v v
1

8
( ).z 1 2 3 4 1 2 3 4 (63) 

The voltages used to induce in-plane motion of the center point are 
parameterized by the control voltages ϕux, ϕuy, and ϕθz as outlined in  
Section 2. Equation (59) is solved for the in-plane DOFs for each 
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control voltage. The positioner’s X axis translation characteristic 
equation is: 

=
+

u
L e t

AEL EI

2
5( 2 )

.x
y

y
ux

3
31

2 (64) 

The mapping from ϕuy⟶uy is equivalent to the above expression. 
The Z axis rotation characteristic equation is: 

=
+

+
+ + +

L ae t d d

AEL a d d

EI L EI La a

2 ( )

( )
.

10 30 ( )

z
y i o

i o
z

y y

3
31

2 2 2 2

2 2 (65)  

For the out-of-plane system, the trial functions are evaluated to 
map the twelve out-of-plane DOFs qop to the Z axis translation uz, X 
axis rotation θx, and Y axis rotation θy of the center point: 

= + + + +

+ + +

u w w w w
1
4

( )
1
8

( )

),

z x x x

x y y y y

1 2 3 4 1 2 3

4 1 2 3 4 (66)  

= + +

+ + + + +
a

w w w w
1

8
(3 3 3 3 )

),

x x x

x x y y y y

1 2 3 4 1 2

3 4 1 2 3 4 (67)  

= + + +

+ + + +
a

w w w w
1

8
(3 3 3 3 )

).

y x x

x x y y y y

1 2 3 4 1 2

3 4 1 2 3 4 (68) 

The voltages used to induce out-of-plane motion of the center point 
are parameterized by the control voltages ϕuz, ϕθx, and ϕθy. The out- 
of-plane DOFs for the above equations are found by solving (60) for 
each control voltage. The positioner’s Z axis translation character-
istic equation is: 

= + + +
+ +

+ +
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For the out-of-plane rotations, after evaluating (60), the terms di
4, do

4, 
di

6, and do
6 are eliminated from the resulting expression as they are 

considered small due to di and d0 having an absolute value less than 
one. Therefore the positioner’s X axis rotational characteristic 
equation is: 

= +
+ +

+ + +
+ + + +

AL e c L t EI a L a
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5 ( 30 (3 2 ))

16 (5 15 15 )

6 ( )) 120

(6( )(3 3 ) 5 )

.x
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3
31 11

3 3

11
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2 2 2 2 2 2

2 2 2 2 2 (70) 

This expression is equivalent for the mapping from ϕθy⟶θy. 

3.6. Dynamic analysis of the nanopositioner 

The lowest resonance frequencies have the most significant in-
fluence on the speed at which the nanopositioner can operate at. The 
lowest frequencies exist in the out-of-plane direction and modal 

analysis is performed on the system in (60) to determine both the 
frequencies and modes shapes, shown in Fig. 6. 

The nanopositioner is soft in the out-of-plane direction and the 
first resonance frequency shifts when a load placed on the stage. By 
augmenting a fixed mass to the system in (60), the change in re-
sonance frequency can be computed. Fig. 7 plots the change in the 
first resonance frequency for a load up to 100 g. 

4. Finite-element-analysis 

A finite-element (FE) model of the stage was constructed using 
ANSYS workbench. The displacement of all four edges are fixed. The 
piezoelectric properties of the stage are modeled using the ANSYS 
Piezo and MEMS Application Customization Toolkit (ACT) extension. 
The piezoelectric properties for PZT-5A are listed in Table 1. 
Each piezoelectric layer is polarized outwards along its thickness 
direction. 

To obtain the displacement per unit voltage for ux∕y∕z and θx∕y∕z 

along the X, Y and Z axes, +1 V and −1 V are applied to the corre-
sponding electrodes for each DOF as shown in Fig. 3. The respective 
displacements are obtained. Table 2 compares the simulated and 
analytical static gains of the stage. 

Resonance frequencies of the stage were simulated using the 
modal analysis module of ANSYS. The first two modes of the 
monolithic stage are shown in Fig. 8. The first resonance frequency 

Fig. 6. The first three modes of the nanopositioner exist in the softer out-of-plane direction.  

Fig. 7. The analytical, FEA and experimental change in the first resonance frequency 
with respect to the mass added to the central stage. 

Table 2 
Comparison of the analytical, FE-simulated and experimental results.       

Static gain  

Analytical FEA Exp  

X-axis translation (nm/V) 10.35 16.8 15.55 
Y-axis translation (nm/V) 10.35 16.8 13.17 
Z-axis translation (nm/V) 98.72 50 66.22 
X-axis rotation (μrad/V) 1.05 2 1.5 
Y-axis rotation (μrad/V) 1.05 2 2.2 
Z-axis rotation (μrad/V) 1.6 2.5 -  

Resonance frequency (Hz) 
X/Y-axis translation 20900 21260 - 
Z-axis translation 577 883.5 845 
X/Y-axis rotation 1220 1960.7 1850 
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appears at 883.5 Hz, translating along the Z axis. The second and 
third mode is a rotational mode about the X and Y axis, occurs at 
1960.7 Hz. To search for the lateral modes along the X and Y axes of 
the stage, the out-of-plane motions along the Z axis were con-
strained. The X and Y axis lateral mode occurs at 21.26 kHz. Simu-
lated resonance frequencies are listed in Table 2 together with their 
analytical counterparts. 

5. Experimental results 

This section presents the experimental identification and char-
acterization of the sensitivity, range, cross-coupling, and modal re-
sponses of the nanopositioner. The experimental setup consists of a 
nanopositioner mounted on a base as pictured in Fig. 10. The sche-
matic of the experimental set-up is shown in Fig. 9. Here J is a 
transformation matrix that maps the five inputs that relate the 
translations and rotations to the eight specific electrode voltages. 
More information on the design of the transformation matrix can be 
found in [39]. The translational motion in each axis is measured 
using an MSA-100-3D Laser Doppler Vibrometer (Polytec, Germany). 
Rotational motions about the X and Y axis are measured using an 
FPS3010 Interferometer (Attocube, Germany) as pictured in Fig. 10. 
The sensing configuration allows measurements in five DOFs but 
rotation around the Z axis. 

To evaluate the travel range, electrodes were driven with a 
10-Hz sinusoidal voltage from −200 V to +200 V as shown in 
Fig. 3. The electrodes were driven by an in-house developed 
8-channel ±  200 V amplifier. Note that +200 V is only 33% of the 
full displacement range and was chosen conservatively to ensure a 
safe operating range for the material. The measured translational 
motion is 26.5 μm in the Z axis, 6.22 μm in the X axis and 5.27 μm 
in the Y axis. The rotational motion is 600 μrad and 884 μrad about 
the X and Y axis respectively. The five-axis motions and their 
corresponding cross-couplings are measured and plotted in  
Fig. 13. It can be observed that the cross-coupling from θX→X is 
significant, at about 50% of the X axis travel range. Table 2 com-
pares the analytical, FE-simulated and measured static gains of 
the monolithic stage. The difference between the predicted and 
experimental values is primarily due to the uncertainty of the 
piezoelectric coefficient d31 [1]. Other causes of discrepancy in-
clude changes in mechanical quality factor, device dimensions and 
electrical coupling [47]. 

The hysteresis exhibited by the stage is plotted in Fig. 11. As only 
33% of the full range voltage is applied to the system, the maximum 
hysteresis error measured in the Y axis is about 6%. This is half of the 
typical PZT-5A hysteresis error which is 14% of the full-scale dis-
placement [48]. In the Z axis, the hysteresis exhibited by the stage is 
only 2%. The improvement in the hysteresis response is due to the 

Fig. 8. Finite-element simulated resonance frequencies of the monolithic stage.  
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push-pull configuration of the top and bottom electrodes which 
results in partial cancellation of the hysteresis between the two 
layers. The creep exhibited by the stage in response to a step change 
in voltage is plotted in Fig. 12. The stage exhibits a creep of 18% after 
a period of 100 s Fig. 13. 

The frequency responses of the nanopositioning stage were 
measured using the MSA-100 laser vibrometer (Polytec, Germany). A 
band-limited pseudo random noise input of amplitude 100 mVpk 
within the frequency range of 100 Hz to 4 kHz was applied to drive 
each axis. Fig. 15 shows the measured frequency responses of the 

Fig. 10. Monolithic Nanopositioner mounted on a base. Attocube interferometer is used to measure the rotational motions about the X and Y axis.  

Fig. 9. Experimental configuration of the monolithic nanopositioner. J is a transformation matrix generating eight actuation voltages related to the translational and rotational 
inputs. 
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stage. Frequency responses of the translational motion in the X and Y 
axis exhibit a relatively constant response over a wide frequency 
range. However, the maximum useful frequency is limited by the 
first resonance mode in the Z axis occurring at 845 Hz. The measured 
rotational resonant mode for both θx and θy appears at 1850 Hz. The 

measured resonance frequencies are in close agreement with that of 
the FE simulations. The effect of the load on the first resonance mode 
for three masses of 5, 10 and 20 g is experimentally validated. Fig. 7 
shows a comparison between the simulated and experimental fre-
quency shift with respect to the mass added to the stage. The two 
out-of-plane mode shapes observed from the FE results are experi-
mentally validated and shown in Fig. 16. It can be observed that 
these modes are the dominant resonant peaks limiting the band-
width of the system in Fig. 15. 

The precision of this stage is limited by the amplifier noise vol-
tage which is approximately 1.25 µV Hz . Therefore, the spectral 
density and standard deviation of the positioning noise can be de-
termined from the frequency responses in Fig. 15 and Eq. (3) in [49]. 
The noise spectral density in the X and Y axis is 0.013 pm Hz or 
32 pm (peak-to-peak). Due to the higher sensitivity and lower re-
sonance frequency, the Z-axis noise is significantly higher at 0.12 
pm Hz or 310 pm (peak-to-peak). These noise figures are similar 
to piezoelectric tube with the same range. 

Since the stage is an open-loop design, the accuracy is limited by 
hysteresis, which is 6% of the full-scale range in X and Y, and 14% in 
Z. Therefore, applications requiring high accuracy (< 1% error) would 
require position sensors and closed-loop control. 

6. Atomic force microscope imaging 

To demonstrate the application of the proposed monolithic na-
nopositioner, the experimental setup in Fig. 14 was used to obtain a 
5 μm×6 μm image of a Budget Sensors HG-100MG calibration 
grating. The profile height of the grating is 110 ± 5 nm. The image 
was obtained using a contact mode cantilever (ContAl-G, Budget-
Sensors, Bulgaria) with a resonance frequency of 13 kHz and a 
nominal stiffness of 0.2 N/m. The grating was imaged in constant- 
force contact-mode using a Nanosurf Easy Scan 2 at. force micro-
scope (Switzerland) with a 20 nN force setpoint Fig. 15Fig. 16. 

Fig. 11. Hysteresis exhibited by the nanopositioner in the Y and Z axis.  

Fig. 12. Creep of actuator motion in open-loop measured over a period of 100 s.  
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Fig. 13. The measured five-axis motion and cross-coupling in response to a 10-Hz sinusoidal input from −200 V to +200 V applied to each axis.  

To Nanopositioner

x

y

Raster Scan

X-axis Input

Y-axis Input

I

Deflection OutputNanosurf

Z-axis

Controller

Nanosurf AFM Head

Bimorph Nanopositioner

Image

Insulating Base

Fig. 14. The schematic of the open-loop AFM imaging using the proposed nanopositioner. The X and Y axis of the nanopositioner are driven in open-loop to create a raster scan. 
The Z axis controller of the AFM head (Easy Scan 2, Nanosurf, Switzerland) is used to detect the cantilever deflection in the vertical position to create the topography of the sample. 
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To move the grating in a raster pattern, the X axis was driven 
with a 0.5 Hz triangular waveform, and the Y axis was driven with a 
ramp signal. Note that the nanopositioner was driven in open-loop 
without any feedforward or feedback control action. The Z axis 

controller of the Nanosurf AFM was used to detect the cantilever 
deflection in the vertical position. The deflection output of the AFM 
was recorded and used to construct the image in Fig. 17. The image 
processing included the removal of the plane from image, which 
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Fig. 15. Measured frequency responses of the monolithic stage.  

Fig. 16. The measured mode shapes of the nanopositioner using an MSA-100–3D laser vibrometer (Polytec, Germany).  
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results from tilting of the sample and cross-coupling between the 
lateral and vertical axis. The effect of hysteresis on the image is not 
observable. This is due to the fact that the scan range is only 33% of 
the full motion range of the nanopositioner. 

7. Conclusions 

This paper proposes a new ultra-thin, six-axis monolithic nano-
positioner fabricated from a bimorph sheet of piezoelectric material. 
By driving only 33% of the full-range capacity, the proposed mono-
lithic nanopositioner has a X and Y translational range of 6.2 μm and 
5.2 μm respectively, a Z translational range of 26.5 μm, and a rota-
tional range of 600 μrad and 884 μrad about the X and Y axis re-
spectively. The Z resonance frequency appears at 845 Hz, and the 
rotational resonance mode appears at 1850 Hz. To demonstrate the 
applications of the proposed stage, an AFM image with 0.5 Hz line 
rate is obtained. Current research involves the integration of closed- 
loop sensors and the design of a feedforward controller for cross- 
coupling compensation. The feedforward design will be combined 
with a feedback controller to compensate for non-linearity and 
tracking error. 
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Appendix A. Flexure model: trial functions 

The beam is parameterized by five mechanical DOFs. The mechanical DOFs are translations and rotations at the free end of the beam (x=L). 
They are the axial extension cu,1=uu, the in-plane deflection cv,1=uv, the in-plane rotation cv,2=θv, the out-of-plane deflection cw,1=uw, and the 
out-of-plane rotation cw,2=θw. A fixed boundary condition at the other end of the beam enforces zero translation and rotation at x=0. Trial 
functions compliant to the continuity requirements of the variational formulation and the boundary conditions at x=0 are [45]: 
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B. Plate model: trial functions 

The in-plane motion of the plate is parameterized by eight DOFs. They are the translations of the four corners in the x-direction cu,i=ui, and 
the translation of the four corners in the y-direction cv,i=vi. The index i refers to each corner: (1) the SW corner, (2) the SE corner, (3) the NE 
corner, and (4) the NW corner. The trial functions for the in-plane displacements are [46]: 

= = + +b x y b x y x
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4

1 1 ,u i v i i i, , (74) 

where b is the length of the plate in the y-direction, a is the length of the plate in the x-direction. In this work a=b. The (xi, yi) values associated 
with each corner are: 

=x y( , ) ( 1, 1),1 1 (75)  

=x y( , ) (1, 1),2 2 (76)  

=x y( , ) (1, 1),3 3 (77)  

=x y( , ) ( 1, 1).4 4 (78) 

The out-of-plane motion plate model is parameterized by 12 degrees-of-freedom given by: 
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T

1 1 1 2 2 2 3 3 3 4 4 4 (79) 

The degrees of freedom are the deflection wi at the corners, and rotations at the corners θx,i, θy,i. The rotations are defined as: 
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The trial functions for the plate are [45]: 
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Fig. 17. Constant-force contact-mode AFM image of a calibration grating with a 5 μm 
pitch and 113 nm height. 
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for each corner i=1, 2, 3, 4. 

C. Flexure model: matrix coefficients 

Outline here are coefficients of the matrices in the system of equations in (28) to (32). The coefficients of the stiffness matrices in the 
equations are: 
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The coefficients of the piezoelectric matrices are: 
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The capacitance matrices are comprised of a single element and are given by: 
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The mass matrix coefficients are: 
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D. Plate model: matrix coefficients 

The coefficients of the stiffness matrices are: 
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The coefficients of the mass matrices are: 
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The rotary inertia terms (those containing tz
3) are considered insignificant in this work. 

E. Kinematic constraints 

Kinematic constraints are used to combine the differential equations for the 20 flexures with those of central plate to produce the gov-
erning equations of the system. Constraints exist on the boundary between the flexures and the central plate. First, the following rotations are 
defined to help define the constraints: 
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Each flexure introduces 5 constraint equations which are listed in Table 3 for each flexure referenced by the index i. The terms on the left- 
hand side of these constraints are the flexure DOFs which are components of the vectors qip

all and qop
all, while the right-hand side of these 

constraints are a function of the plate DOFs which are components of qip and qop. By evaluating all these constraints the matrix equations in  
(53) and (54) are formed.  
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