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Abstract: This article describes a memory efficient method for solving large-scale optimization
problems that arise when planning scanning-beam lithography processes. These processes
require the identification of an exposure pattern that minimizes the difference between a desired
and predicted output image, subject to constraints. The number of free variables is equal to the
number of pixels, which can be on the order of millions or billions in practical applications. The
proposed method splits the problem domain into a number of smaller overlapping subdomains
with constrained boundary conditions, which are then solved sequentially using a constrained
gradient search method (L-BFGS-B). Computational time is reduced by exploiting natural
sparsity in the problem and employing the fast Fourier transform for efficient gradient calculation.
When it comes to the trade-off between memory usage and computational time we can make
a different trade-off compared to previous methods, where the required memory is reduced by
approximately the number of subdomains at the cost of more computations. In an example
problem with 30 million variables, the proposed method reduces memory requirements by 67%
but increases computation time by 27%. Variations of the proposed method are expected to find
applications in the planning of processes such as scanning laser lithography, scanning electron
beam lithography, and focused ion beam deposition, for example.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

During integrated circuit fabrication, materials are selectively added or subtracted by depositing
a layer of resist material, then modifying certain areas using a lithography process [1,2]. The
lithography process involves exposing the resist to light through a complex mask or reticle. The
exposed resist is then removed (or retained) through a development process. Many mask sets are
required to produce a circuit, which can be prohibitively expensive for low-volume or prototype
applications.

To eliminate the need for mask sets, maskless lithography methods have evolved for low-volume
or quick turnaround applications. These processes use scanning laser beams [3,4], electron
beams [5,6], or ion-beams [7–9] to directly modify the substrate or expose resist. Scanning laser
and electron beam lithography is also used in many other low-volume 2D micro-fabrication
applications, such as microfluidics [10], meta-materials [11], and reticle fabrication for projection
lithography [12]. The processing speed can be improved using methods such as zone-plate arrays
[13,14] or photon sieve lithography [15,16] which generate an array of focused spots. Other
serial processes include near-field optical probe lithography [17–22], thermal-probe lithography
[23,24] and mechanical-probe lithography [25,26].

Although the exposure source and physical mechanism of serial maskless lithography methods
are varied, many can be described as a controllable source with a known spatial distribution. For
example, the spatial distribution of scanning optical and electron beam lithography is limited by
the wavelength and numerical aperture. Since the dimension of the desired features are similar in
scale to the spatial distribution of the beam, an optimization problem arises. In scanning beam
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lithography, a set of exposure locations and beam power settings must be found that optimize the
resolution of developed features [27–29]. A similar planning step is required by any method
where the spatial distribution of the source cannot be neglected.

The first methods for exposure planning used rules [30,31] that were similar to those employed
in projection lithography. These were improved by linear programming methods [29] that
were commercialized for proximity correction [32–34]. In 2017, quadratic cost functions were
introduced to optimize feature geometry with regularization of exposed power [35]. A non-linear
programming approach with interior-point optimization was described in [36]. Although this
method was quick to converge due to the calculation of first and second order derivatives, it
required the storage of an N2 × N2 matrix for an N × N problem, which is only suitable for small
problems (300 × 300). The numerical efficiency was later improved by exploiting sparsity and
approximating the first derivative [4,35]; however, the required memory was still on the order of
N2 × N2. An alternative to optimization is deconvolution based on the Fredholm integral [37],
which reduces the largest matrix to N × N; however, this method requires an order of magnitude
more iterations than gradient based methods and does not minimize a known cost function so
optimality is neither guaranteed nor expected. These three methods are directly compared in
[38]. In summary, methods for planning serial maskless lithography processes are either limited
by memory or do not guarantee optimality and require significant iterations.

Although this work focuses on maskless lithography, it should be noted that exposure
optimization problems also exists in projection lithography [39–42]. However, these methods are
fundamentally different since the optimization variables are the binary mask and source pattern
[43–45]. Due to the large scale of mask optimization problems, considerable efforts have been
made for improving the numerical efficiency; for example, through the use of basis functions
[46], Lagrangian methods [47], set-based methods [48,49], and neural networks [50–52].

The contribution of this article is to reduce the memory requirements of gradient-based
optimization methods for scanning-beam lithography planning. The proposed method splits the
problem domain into a number of smaller overlapping subdomains with constrained boundary
conditions, which are then solved sequentially using a constrained gradient search method
(L-BFGS-B). Computational time is reduced by exploiting natural sparsity in the problem and
employing the fast Fourier transform for efficient gradient calculation. Compared to previous
methods [4,35–37], the proposed method is slower but the required memory is reduced by
approximately the number of subdomains.

The following three sections describe the forward process model, define the optimization
problem, and derive the analytical gradients of the cost function. The problem space is them
subdivided in Section 5, followed by memory efficient optimization in Section 6, and an example
application in Section 7. A complexity analysis and an investigation of accuracy is presented in
Section 8, then the article is concluded in Section 9.

2. Process model

This section describes a general model of scanning-beam lithography processes. Given an input
exposure pattern, the model predicts the photoresist conversion fraction, which is directly related
to developed features. The model assumes that the photoresist is sufficiently thin so that the beam
profile remains approximately constant throughout the depth. The optical properties of the film,
which are a function of the exposure state, are also assumed to be constant. Other optical effects,
such as scattering and cavity formation, are ignored.

An introduction to the scanning-beam lithography process is illustrated in Fig. 1. This figure
shows how a set of discrete exposures can be used to create features with a resolution comparable
to the beam width. However, the middle row demonstrates that simple choices of exposure
energy and location result in sub-optimal developed features. The bottom row illustrates how an
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optimized exposure pattern yields the best possible feature resolution, and it is also a numerical
example of the proposed method.
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Fig. 1. Illustration of the scanning-beam lithography process. The top row shows a
one-dimensional interpretation, where a discrete exposure pattern W represents the beam
exposure time or power setting (vertical axis) at discrete locations (horizontal axis). The
resulting dosage D (exposure energy per unit area) is the sum of beam kernels B, scaled and
shifted by the exposure pattern W. The output feature Ẑ is predicted by the threshold function
fZ(·) (Eq. (7)) which models the development process. In the middle row, a two dimensional
exposure problem is considered. The ‘naive’ exposure pattern is a scaled version of the
desired feature; however, the beam kernel B can be observed to significantly expand the
desired feature due to over exposure. The middle and bottom row use a realistic development
function fZ(·) plotted in Fig. 2. To minimize the achievable difference between the desired
and developed features, the bottom row shows an example of an optimized exposure pattern,
which results in the best possible developed feature given the beam kernel and development
model.

The exposure pattern W, beam kernel B, dosage D, and predicted feature Ẑ are matrices which
contain values at discrete locations in a workspace. The workspace is represented by a uniformly
spaced rectangular grid

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x11 . . . x1N2

...
. . .

...

xN11 . . . xN1N2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where xij = [x(1)i x(2)j ]T. We let δp = x(p)i+1 − x(p)i denote the grid resolution in direction p, whereas
N = N1N2 is the grid size (number of grid points). Each grid point is associated with a desired
feature value stored in the binary matrix Z = [zij].
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The grid is exposed to a scanned beam with intensity modelled by an exponential function,
which represents a two-dimensional Gaussian beam with arbitrary x and y axis width and rotation,
as described in [35]. That is,

BH(x) ∝ exp
(︃
−1

2
xTH−1x

)︃
. (2)

We refer to H = [hij] as the bandwidth, with entries defined in terms of its inverse according to

[H−1]11 =
4 cos2 ϕ

w2
x0
+

4 sin2 ϕ

w2
y0

, (3)

[H−1]12 = [H−1]21 = −2 sin 2ϕ
w2

x0
+

2 sin 2ϕ
w2

y0
, (4)

[H−1]22 =
4 sin2 ϕ

w2
x0
+

4 cos2 ϕ

w2
y0

. (5)

In this work, the UV scanning laser lithography system described in [35] will be used as an
example. The beam parameters for this system were measured to be wx0 = 570 nm, wy0 = 560 nm
and ϕ = 2.2◦ [35].

The dosage D represents the absorbed energy per unit area, which is determined by the exposure
pattern W and beam kernel B. The exposure W can represent any variable that is proportional to
energy, e.g. beam power for a constant exposure time, or exposure time with a constant beam
power. The dosages and exposure values are stored in the matrices D = [dqk] and W = [wij],
respectively. At a given point, the total dosage is found by summing the contributions from the
entire grid

dqk(w) =
N1∑︂
i=1

N2∑︂
j=1

wijBH(xij − xqk), (6)

where w = vec W.
As the photoresist is exposed by the beam, the increasing dosage leads to a chemical change

due to photon absorption or photocatalysis. A negative photoresist becomes less sensitive to a
developing agent after exposure and the developed photoresist features are similar to the dosage
pattern. Conversely, a positive photoresist becomes more sensitive to the developing agent and
results in subtractive features that are similar to the dosage pattern. Regardless of the photoresist
polarity, the development process is dependent on the fraction of photoresist that is converted;
therefore, this quantity is used to define the desired feature. To complete the process model, a
function is required that maps the dosage to the predicted conversion fraction.

The simplest model of the development process is a threshold function, where the photoresist
is assumed to be 100% converted above a certain dosage threshold, as depicted in the top row of
Fig. 1. However, in general the conversion function can be any increasing function of dosage.
In this work, the sigmoid threshold function plotted in Fig. 2 is used to model the development
process [35–37]. The sigmoid mapping function fZ(·) from the dosage to the predicted feature
Ẑ = [zqk] is

ẑqk(w) = fZ
(︁
dqk(w))︁ = [︂

1 + exp
[︁ − α(dqk(w) − d50%)

]︁ ]︂−1
, (7)

where α is the steepness of the curve, and d50% is the dosage where half of the photoresist
is converted. The steepness is plotted for α = 5, 10, 20, 40 in Fig. 2. In Section 7, the
proposed method is applied to the optimization of ultraviolet scanning laser lithography with a
positive photoresist (AZ ECI3007, MicroChemicals, Germany). The conversion fraction of this
photoresist was adequately modeled using α = 5 in Ref. [35–37]. It is convenient to normalize
the fully converted photoresist to 1 and therefore d50% = 0.5.
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Fig. 2. The sigmoid threshold function fZ(·) defined in Eq. (7) models the development
process. In scanning laser lithography, this function relates the exposure energy to the
fraction of converted photoresist. It is parameterized by the steepness α and the dosage d50%
where half of the photoresist is converted. The steepness is plotted for α = 5, 10, 20, 40.

3. Optimization problem

The optimization objective is to find an exposure pattern wij ≥ 0 that minimizes the difference
between the desired feature Z and the predicted feature Ẑ. The non-negative constraint on wij
is due to the nature of exposure energy, which cannot be less than zero. It also desirable to
minimize the total dosage, since this minimizes negative effects such as heating, scattering, and
other background exposure processes such as reflection to and from the substrate and objective
lens. These optimization objectives are summarized by the following problem

min
w

f (w) =
N1∑︂
q=1

N2∑︂
k=1

[zqk − ẑqk(w)]2 + γd2
qk(w),

subject to wij ≥ 0.

(8)

The penalty parameter γ>0 balances the trade-off between feature matching and total dosage.
Penalizing the L2 norm is preferred in this application as the most significant sources of
background exposure are scatter within the substrate, and reflection between the substrate and
objective. Both of these sources are proportional to cumulative power, which is proportional to
the L2 norm. In this work, the optimal value of γ was found to be 10−4, which is recommended as
a starting point in other applications. Some experimentation may be required as the regularization
is likely to be affected by other factors such as photoresist properties.

4. Gradient calculation

Following the procedure described in [53], the fast Fourier transform (FFT) is utilized for efficient
computation of the cost function and its gradient. First, Eq. (6) is rewritten as a convolution

dqk =

L1∑︂
i=−L1

L2∑︂
j=−L2

wq−i,k−jBi,j
H , (9)

where Bi,j
H = BH([iδ1, jδ2]T) and wq−i,k−j = 0 if the indexed point lies outside the grid. The dosage

in Eq. (6) is recovered if L1 = N1 − 1 and L2 = N2 − 1; however, as the beam intensity of Eq. (2)
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decays exponentially and therefore in practice lacks support outside a finite region, Eq. (6) can be
approximated by shrinking L1 and L2 for faster computations. A suitable choice is

Lp = min

(︄
Np − 1, ⌈τ

√
λ

δp
⌉
)︄

, (10)

where τ is a user-defined scaling parameter, λ is the maximum eigenvalue of H and ⌈·⌉ denotes
the ceiling function. The authors of [53] suggest using τ = 3.7 in the context of bivariate kernel
density estimation; however, to safe-guard against numerical inaccuracies, a slightly higher value
of τ = 10 is used here.

The gradient of the cost function in Eq. (8) can also be expressed as a convolution [35].
Specifically, ∇f = vec G where G = [gqk] and

gqk =

L1∑︂
i=−L1

L2∑︂
j=−L2

[︂
−2αẑq−i,k−j(1 − ẑq−i,k−j)(zq−i,k−j − ẑq−i,k−j) + 2γdq−i,k−j

]︂
Bi,j

H . (11)

Before applying the FFT, adequate zero-padding is required as the bandwidth H is unconstrained
(non-diagonal) [53]. The matrices are

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B−L1,−L2
H B−L1,−(L2−1)

H · · · B−L1,L2
H 0

B−(L1−1),−L2
H

. . . · · · ...
...

... · · · . . .
...

...

BL1,−L2
H · · · · · · BL1,L2

H
...

0 · · · · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

and

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · 0
... w11 · · · w1N2

...
...

...
. . .

...
...

... wN11 · · · wN1N2

...

0 · · · · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

where the entry w11 is placed at index (L1 + 1, L2 + 1). The matrices Z, Ẑ and D are formed with
the same structure as in W. The 0-blocks are built to match the dimension P1 × P2, where P1
and P2 are chosen as a suitable composite integers. Next, the dosage and gradient are computed

D = F−1 [︁F [W] ◦ F [B]]︁ , (14)

G = F−1 [︁F [−2αẐ ◦ (1 − Ẑ) ◦ (Z − Ẑ) + 2γD] ◦ F [B]]︁ , (15)

where F and F−1 denote the FFT and its inverse, respectively, while ◦ denotes the Hadamard
(element-wise) product of matrices. The desired matrices D and G are found in D and G as the
blocks defined by the rows 2L1 + 1 to 2L1 + 1 + N1 and columns 2L2 + 1 to 2L2 + 1 + N2.
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5. Subdomain division

For large problems sizes when the number of variables N renders the problem computationally
infeasible, the optimization can be performed in different subdomains. The total solution is then
obtained by concatenation of the local solutions.

Let w∗ denote the optimal solution on the grid X, and let wΠ∗ ∈ w∗ denote the optimal solution
on the subdomain Π ∈ X. The limited support of the beam intensity (Eq. (2)) assures that a
variable wij affects the value of f only in a limited region. That being said, there is a possibility
of a chain effect propagating through the grid since nearby variables are affecting each other.
However, the binary structure of Z significantly reduces this effect. Hence, by solving the
problem on the subdomain, an estimate ŵΠ∗ of wΠ∗ is obtained. However, solving the problem
only on the domain Π is insufficient as the boundary components may be incorrect. The trade-off
is to use another region Γ such that Π ∈ Γ ∈ X. Then ŵΠ∗ can be obtained by extracting the
correct components from the solution ŵΓ∗ computed on Γ. Thus, if Γ is sufficiently larger than Π,
the difference between ŵΠ∗ and wΠ∗ is negligible. In practice, for the class of problems under
consideration, it was found to be reasonable to form Γ by adding Lp points to Π in direction p. A
simple illustration of this subdomain division is given in Fig. 3.

Π1
Π2
Π3
Π4
Γ1
Γ2
Γ3
Γ4

Fig. 3. Illustration of subdomain division. The problem is solved on the Γ-regions, and
then the Π-regions are concatenated.

Although this approach is novel for the application under consideration, it should be stressed
that subdomain division and local optimization do not constitute a novel idea in general. In a
broader context, so called domain decomposition methods [54,55] are well-established tools
for solving differential equations through subdomain division, and originate from the work
by Hermann Schwarz in 1870 [54]. Due to the iterative procedure of these methods, they
are in essence comprising local optimization problems. Example applications include finite
element solvers [56], total variation de-noising [57] and plasticity with hardening [58]. Moreover,
the same principle has for example been used for the ptychography problem [59], including
efficient parallel GPU implementations [60,61]. In [62] a similar approach is used to reduce the
computational time within composite pile foundation.

It can observed that the subproblems are independent of each other. In principle, this makes
the optimization approach straight-forward to solve in parallel by distributing the subproblems on
different CPU cores. However, this conflicts with the aim of reducing the memory requirements
since the different processes compete for the same RAM memory. In the case where the RAM
memory is sufficiently large, solving the subproblems in parallel will reduce the computation
time by approximately the number of subdomains. Future improvements to computation time
could also be achieved by utilizing a GPU for FFT computation.
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6. Memory efficient optimization

The limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm with bound constraints
(L-BFGS-B) [63] is employed to solve the optimization problem of Eq. (8). This relies upon the
BFGS method [64], which is a well-established quasi-Newton algorithm that approximates the
inverse Hessian matrix and provides significantly faster convergence.

The limited-memory BFGS (L-BFGS) [65] method is a modification of BFGS that avoids
building an entire matrix, which is beneficial for high-dimensional problems. The L-BFGS
method expresses the BFGS update recursively and disregards all but the m latest Hessian
approximations. That way the computation of the search direction can be carried out in
memory-efficient for-loops.

The L-BFGS-B method [63] is a further extension that allows for bounded input constraints
of the form lij<wij<uij. At each iteration k, it minimizes a quadratic model of the cost function
along the path wij(t) = p(w(k)

ij − tg(k)ij , lij, uij), where

p(w, l, u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

l if w<l,
w if w ∈ [l, u],
u if w>u.

(16)

In the problem under consideration, lij = 0 and uij = ∞ for all inputs wij. The optimization is
initialized by setting wij = 1 if zij = 1, which corresponds to all grid points that lie inside the
desired feature pattern. The remaining variables are initialized to 0. Judging from previous
experiments [35–37] and by intuition, grid points outside the pattern are unlikely to be exposed
at the optimum.

To speed up the optimization, the sparsity of the problem is exploited. The finite region of
the desired feature combined with the limited support of the kernel function allows for an a
priori identification of grid points that will, in practice, be un-exposed at the optimum. For
instance, variables at grid points that lie outside the desired pattern can be disregarded. Hence,
the corresponding entries are removed from the gradient before it is returned to the L-BFGS-B
routine.

In the implementation, we are using the MATLAB wrapper [66] of the L-BFGS-B implemen-
tation described in [67]. The proposed procedure is summarized in Algorithm 1 and illustrated
in Fig. 4.

Note that the L-BFGS-B optimizer is not a crucial choice. There are several other optimizers
suitable for the large-scale problems, such as gradient descent as used in [35]. The constraint
wij ≥ 0 can also be achieved through a variable transformation rather than by the optimizer, for
instance by setting wij = epij and then optimizing with respect to pij. A pure gradient based
routine is more memory efficient than L-BFGS-B, which keeps track of the m latest pairs of input
points and gradients. The experiment below uses m = 5, which adds a relatively small memory
requirement compared to the matrix formations and operations involved when computing the cost
function and its gradient. However, a smaller value of m can be used as well (even m = 1, which
resembles a gradient descent optimizer). L-BFGS-B is used in this work as it is a well-established
method with an efficient and readily available implementation, and it is appealing due to the
Hessian approximation and the built in support for constrained variables. Finally, L-BFGS-B
worked well in practice for a range of problems.



Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 20572

Fig. 4. Illustration of Algorithm 1. The desired feature is the C-shaped black region (left).
Assuming that the problem is too large to be solved directly, the grid X is split horizontally
into two equally-sized subdomains Π1 and Π2 (middle). To avoid undesired boundary effects
in the solutions, the extended regions Γ1 and Γ2 are constructed, of which one is shown
above (right). The yellow parts indicate variables that with great certainty will be zero at the
optimum and therefore are excluded from the optimization. Hence, we are interested in the
variables indicated by the beige overlay. These are then concatenated with the equivalent
part of Γ2 to form the solution over X.

7. Numerical example

This section demonstrates the proposed method on a medium scale lithography test pattern shown
in Fig. 5(a). The test pattern represents a 100 µm × 100 µm area with 5486 × 5488 pixels and
a resolution of 18.2 nm; that is, there are approximately 30 million variables to optimize. The
beam parameters that represent the laser and optical system were experimentally identified in
previous work as wx0 = 570 nm, wy0 = 560 nm and ϕ = 2.2◦ [35]. The photoresist fully exposed
state is defined to be 1 and d50% = 0.5. The steepness of the photoresist exposure curve (Eq. (7))
is α = 5, and the penalty parameter γ = 10−4.

The test pattern shown in Fig. 5(a) examines the limits of a lithography process and is ideal for
evaluating two important aspects of the optimization procedure. First, the optimization should
result in consistent lines and features that do not vary along the length, or at different locations
in the pattern, unless there are nearby features that require consideration. In other words, there
should be no visible artefacts or asymmetry in geometric features. Secondly, the optimized
features should degrade predictably as the objective becomes unachievable. The minimum feature
size in scanning beam lithography is determined by the steepness of the photoresist exposure
curve and the beam width. In this example where α = 5, the minimum size of an exposed feature
is approximately equal to the beam width, which is shown for reference in the close-up views in
Fig. 5.

The optimization procedure was completed for two cases, one where the entire pattern was
optimized in one step, and another where the area is split into a 2 × 2 subdomain array. Both
optimizations resulted in numerically identical solutions but the 2 × 2 subdomain required 67%
less memory at the expense of 27% longer optimization time. The longer optimization time is
due to additional computations required by the overlap area. The overlap area is also the reason
why memory usuage is not reduced by 75%. The numerical results are summarized in Table 1.

Since the optimization results were numerically identical, only the results for the 2× 2 solution
are reported in Fig. 5. The top row of Fig. 5 shows the initial guess of the exposure pattern
(Fig. 5(a)), which results in the dosage (Fig. 5(b)) and the resulting feature (Fig. 5(c)), which is
grossly over exposed. The pixels of the initial guess (Fig. 5(a)) are set to 1 where the desired
output feature is non-zero; therefore, (Fig. 5(a)) represents both the initial guess and the desired
output feature. The middle row shows the optimized exposure pattern (Fig. 5(d)) and the resulting
dosage (Fig. 5(e)) and output feature (Fig. 5(f)). In the close up view of the corner features
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Fig. 5. Example application of the proposed method to a lithography test pattern. The
top row shows the desired output feature (a) which is also used as the initial guess of the
exposure pattern. The exposure (a) results in the dosage (b) and the resulting feature (c),
which is grossly over exposed. The middle row shows the optimized exposure pattern (d)
and the resulting dosage (e) and output feature (f). In the close up view of the corner features
(g), the optimization result is observed to degrade predictably as the line width and spacing
approach the beam-width, which is illustrated by a white bar. In the close up views (h) and
(i), the simulated exposure is observed to produce parallel lines and geometric features with
no visible artefacts and degrades predictably as the feature size approaches the beam-width.

Table 1. Optimization time and memory usage for the example in Fig. 5.
When the area is split into 4 overlapping subdomains, the memory usage
is reduced by 67% at the expense of a 27% increase in optimization time.
The optimization was implemented in MATLAB on a Windows 10 PC with

an i5-6300HQ processor and 32 GB RAM.

Subdomains Subdomain Size Optimization Time Memory Usage

1 × 1 5486 × 5486 1446 s 25.6 GB

2 × 2 1372 × 1372 1843 s 8.3 GB
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Algorithm 1 Exposure optimization
1: Input: Grid X, desired feature Z
2: Divide X into n ≥ 1 subdomains {Πi}
3: for i = 1 . . . n do
4: Form Γi such that Πi ∈ Γi
5: Identify sparse entries in Γi and keep them constant 0
6: Compute ŵΓi∗ = argmin

w
f (w) on Γi using L-BFGS-B

7: Extract ŵΠi∗ ∈ ŵΓi∗
8: end for
9: Concatenate the solutions {ŵΠi∗ } to form ŵ∗

(Fig. 5(g)), the optimization result can be observed to degrade predictably as the line width and
spacing approach the beam width, which is illustrated by a white bar. In the close up views
(Fig. 5(h) and 5(i)), the simulated exposure is observed to produce parallel lines and geometric
features with predictable degradation as the feature size approaches the beam width.

In summary, the proposed subdomain method optimizes an exposure pattern with approximately
30 million variables subject to positivity constraints in 30 minutes on a modest PC. Memory
requirements were reduced by nearly three-quarters compared to a direct solution using the same
underlying method. This example demonstrates the utility of the proposed method for increasing
the scale of scanning beam lithography optimization, or significantly decreasing the memory
requirements.

8. Complexity and accuracy analysis

As the memory requirement is directly proportional to the grid size, it scales with O(N). The
complexity of the cost function and gradient computations are dictated by the convolutional
operations, which are of order O(N log N) when using the FFT. The approximative FFT
computations should improve this scaling, as the reduced convolutional limits in Eq. (10) are
independent of N. As the L-BFGS-B routine has a computational cost of approximately O(N)
per iteration [63], the overall complexity is expected to be (at most) of order O(N log N).

To confirm the above estimates, an empirical study was performed on the example problem
described in Section 7. The results of the analysis are plotted in Fig. 6. In Fig. 6(a), the
computation time of the cost function and gradient is plotted against the number of variables,
averaged over 10 trials. The plot includes results for exact FFT computations (τ = ∞) and the
approximate version with τ = 10. Reference lines corresponding to scaling rates of O(N log N)
and O(N) are also plotted. The results show that computation time scales with O(N) rather than
O(N log N), especially when τ = 10. Furthermore, the approximation reduces the computation
time with a factor of 4-6 on this interval (increasing with N).

The time complexity of the complete optimization procedure (here comprising 50 iterations) is
plotted against N in Fig. 6(b). The results also show a scaling of rate O(N), which confirms that
the L-BFGS-B routine does not degrade the overall complexity. In addition to L-BFGS-B with
memory limit m = 5, this plot includes two versions of gradient descent (GD) obtained by setting
m = 1: one using the same bound constraint treatment as in L-BFGS-B, and the other using the
variable transformation wij = epij mentioned in Section 6. It is seen that the time consumption
per iteration is lower in these cases (roughly 40% reduction).

Also, Fig. 6(c) shows the evaluation of the cost function for the largest number of variables
(N = 108) used in the experiments of Fig. 6(b). The bound constrained versions converge faster
initially. However, the results are very similar for the memory limits 5 and 1 – as noted in [64],
the optimal choice of memory limit is highly problem dependent.
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Fig. 6. Empirical analysis of time complexity and cost evaluation.
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A study was also performed on the effect of subdomain division on the accuracy of results and
the computation time. Figure 7 plots RMS difference between the desired and predicted feature,
and the computation time for different subdomain divisions. The results are reported relative to
the full grid solution with exact FFT computations (1 × 1, τ = ∞). It is seen that the accuracy is
not affected by the FFT approximation, or by the subdomain division (maximum error less than
0.02%). Although there is a computational overhead from the subdomain division, it is small in
comparison to the time we gain from the approximation. These studies were conducted on a
Scientific Linux 6.10 server with an AMD Opteron (Bulldozer) 6282SE processor and 128 GB
RAM.
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Fig. 7. The impact of subdomain division on accuracy and computation time. The results
reported are relative to the full grid with exact FFT computations (1 × 1, τ = ∞).

9. Conclusion

The article extends previous work on scanning beam lithography processes by proposing a
memory efficient optimization procedure. The benefits of reduced memory requirements include
lower minimum hardware specifications, or direct solution of larger scale problems, or a finer
pixel resolution.

Instead of optimizing for the full grid directly, the problem is divided into smaller subdomains
that are partly overlapping to avoid inaccurate boundary effects. The sub-problems are solved
one at a time using the L-BFGS-B gradient search algorithm, and are then concatenated into a
global solution. Furthermore, efficient computations are obtained through local application of the
fast Fourier transform and utilization of natural sparsity. The overlaps between the subdomains
imply a computational overhead resulting in a longer run-time; the upside is that the memory
requirements are reduced by a factor almost equal to the number of subdomains, which opens up
for problem sizes much larger than otherwise possible.

Empirical experiments demonstrate the performance of the proposed method; for instance,
by splitting a problem with 30 million variables into 4 subdomains, it is solved with 67% less
memory and a time increase of merely 27%. This trade-off between reduced memory and longer
computation time is expected to be desirable in large-scale applications that tend to be memory
limited. Moreover, it is shown that the time complexity scales linearly with the problem size and
that the subdomain division has a negligible impact on the accuracy of the solution.
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This work focuses on applications in scanning laser lithography. Future work will consider
modified process models and cost functions that are suited to other point-wise lithography and
direct fabrication processes such as scanning electron beam lithography, focused ion beam
deposition, and plasma etching.
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Council (DP210103383).

Disclosures. The authors declare no conflicts of interest.

Data availability. No data were generated or analyzed in the presented research. Source code for reproduction of
experimental results is available online [68].

References
1. H. J. Levinson and T. A. Brunner, “Current challenges and opportunities for EUV lithography,” in International

Conference on Extreme Ultraviolet Lithography 2018, vol. 10809 (SPIE, 2018), pp. 5–11.
2. M. Van de Kerkhof, J. Benschop, and V. Banine, “Lithography for now and the future,” Solid-State Electron. 155,

20–26 (2019).
3. S. Srikanth, S. Dudala, S. Raut, S. K. Dubey, I. Ishii, A. Javed, and S. Goel, “Optimization and characterization of

direct UV laser writing system for microscale applications,” J. Micromech. Microeng. 30(9), 095003 (2020).
4. F. Peng, Z. Yang, and Y. Song, “3D grayscale lithography based on exposure optimization,” in International Workshop

on Advanced Patterning Solutions (IWAPS), (IEEE, 2021), pp. 1–3.
5. J. N. Randall, J. H. Owen, J. Lake, and E. Fuchs, “Next generation of extreme-resolution electron beam lithography,”

J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 37(6), 061605 (2019).
6. V. R. Manfrinato, F. E. Camino, A. Stein, L. Zhang, M. Lu, E. A. Stach, and C. T. Black, “Patterning Si at the 1 nm

length scale with aberration-corrected electron-beam lithography: tuning of plasmonic properties by design,” Adv.
Funct. Mater. 29(52), 1903429 (2019).

7. A. Joshi-Imre and S. Bauerdick, “Direct-Write Ion Beam Lithography,” J. Nanotechnol. 2014, 1–26 (2014).
8. M. Horak, K. Bukvisova, V. Svarc, J. Jaskowiec, V. Krapek, and T. Sikola, “Comparative study of plasmonic antennas

fabricated by electron beam and focused ion beam lithography,” Sci. Rep. 8(1), 9640 (2018).
9. A. Cattoni, D. Mailly, O. Dalstein, M. Faustini, G. Seniutinas, B. Rösner, and C. David, “Sub-10 nm electron and

helium ion beam lithography using a recently developed alumina resist,” Microelectron. Eng. 193, 18–22 (2018).
10. T. Trantidou, M. S. Friddin, K. B. Gan, L. Han, G. Bolognesi, N. J. Brooks, and O. Ces, “Mask-free laser lithography

for rapid and low-cost microfluidic device fabrication,” Anal. Chem. 90(23), 13915–13921 (2018).
11. A. Melnikov, S. Köble, S. Schweiger, Y. K. Chiang, S. Marburg, and D. A. Powell, “Microacoustic metagratings at

ultra-high frequencies fabricated by two-photon lithography,” arXiv preprint arXiv:2202.03490 (2022).
12. S. Achenbach, S. Hengsbach, J. Schulz, and J. Mohr, “Optimization of laser writer-based UV lithography with high

magnification optics to pattern X-ray lithography mask templates,” Microsyst. Technol. 25(8), 2975–2983 (2019).
13. K. Keskinbora, U. T. Sanli, M. Baluktsian, C. Grévent, M. Weigand, and G. Schütz, “High-throughput synthesis of

modified Fresnel zone plate arrays via ion beam lithography,” Beilstein J. Nanotechnol. 9, 2049–2056 (2018).
14. K. Xu, J. Qin, and L. Wang, “Sub-micrometer direct laser writing using an optimized binary-amplitude zone plate

lens,” Opt. Lett. 46(20), 5185–5188 (2021).
15. R. Menon, D. Gil, G. Barbastathis, and H. I. Smith, “Photon-sieve lithography,” J. Opt. Soc. Am. A 22(2), 342–345

(2005).
16. M. N. Julian, D. G. MacDonnell, and M. C. Gupta, “High-efficiency flexible multilevel photon sieves by single-step

laser-based fabrication and optical analysis,” Appl. Opt. 58(1), 109–114 (2019).
17. R. Garcia, A. W. Knoll, and E. Riedo, “Advanced scanning probe lithography,” Nat. Nanotechnol. 9(8), 577–587

(2014).
18. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang,

“Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(1), 175 (2011).
19. X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, and C. A. Mirkin, “Desktop nanofabrication with

massively multiplexed beam pen lithography,” Nat. Commun. 4(1), 2103 (2013).
20. S. Bian, S. B. Zieba, W. Morris, X. Han, D. C. Richter, K. A. Brown, C. A. Mirkin, and A. B. Braunschweig, “Beam

pen lithography as a new tool for spatially controlled photochemistry, and its utilization in the synthesis of multivalent
glycan arrays,” Chem. Sci. 5(5), 2023–2030 (2014).

21. L. R. McCourt, M. G. Ruppert, B. S. Routley, S. C. Indirathankam, and A. F. Fleming, “A comparison of gold and
silver nanocones and geometry optimisation for tip-enhanced microscopy,” J. Raman Spectrosc. 51(11), 2208–2216
(2020).

22. Y. Hu and Y. Meng, “Numerical modeling and analysis of plasmonic flying head for rotary near-field lithography
technology,” Friction 6(4), 443–456 (2018).

23. L. L. Cheong, P. Paul, F. Holzner, M. Despont, D. J. Coady, J. L. Hedrick, R. Allen, A. W. Knoll, and U. Duerig,
“Thermal probe maskless lithography for 27.5 nm half-pitch Si technology,” Nano Lett. 13(9), 4485–4491 (2013).

https://doi.org/10.1016/j.sse.2019.03.006
https://doi.org/10.1088/1361-6439/ab92ea
https://doi.org/10.1116/1.5119392
https://doi.org/10.1002/adfm.201903429
https://doi.org/10.1002/adfm.201903429
https://doi.org/10.1155/2014/170415
https://doi.org/10.1038/s41598-018-28037-1
https://doi.org/10.1016/j.mee.2018.02.015
https://doi.org/10.1021/acs.analchem.8b03169
https://doi.org/10.1007/s00542-018-4161-2
https://doi.org/10.3762/bjnano.9.194
https://doi.org/10.1364/OL.439623
https://doi.org/10.1364/JOSAA.22.000342
https://doi.org/10.1364/AO.58.000109
https://doi.org/10.1038/nnano.2014.157
https://doi.org/10.1038/srep00175
https://doi.org/10.1038/ncomms3103
https://doi.org/10.1039/c3sc53315h
https://doi.org/10.1002/jrs.5987
https://doi.org/10.1007/s40544-017-0189-z
https://doi.org/10.1021/nl4024066


Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 20578

24. S. W. Tang, M. H. Uddin, W. Y. Tong, P. Pasic, W. Yuen, H. Thissen, Y. W. Lam, and N. H. Voelcker, “Replication of a
tissue microenvironment by thermal scanning probe lithography,” ACS Appl. Mater. Interfaces 11(21), 18988–18994
(2019).

25. H. T. Soh, K. W. Guarini, and C. F. Quate, Scanning probe lithography, vol. 7 (Springer Science & Business Media,
2013).

26. Y. Yan, Y. He, G. Xiao, Y. Geng, and M. Ren, “Effects of diamond tip orientation on the dynamic ploughing
lithography of single crystal copper,” Precis. Eng. 57, 127–136 (2019).

27. M. A. Mohammad, M. Muhammad, S. K. Dew, and M. Stepanova, “Fundamentals of electron beam exposure and
development,” in Nanofabrication, (Springer, 2012), pp. 11–41.

28. K. Yuan, B. Yu, and D. Z. Pan, “E-beam lithography stencil planning and optimization with overlapped characters,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(2), 167–179 (2012).

29. F. Yesilkoy, K. Choi, M. Dagenais, and M. Peckerar, “Implementation of e-beam proximity effect correction using
linear programming techniques for the fabrication of asymmetric bow-tie antennas,” Solid-State Electron. 54(10),
1211–1215 (2010).

30. B. D. Cook and S.-Y. Lee, “PYRAMID-a hierarchical, rule-based approach toward proximity effect correction. II.
Correction,” IEEE Trans. Semicond. Manufact. 11(1), 117–128 (1998).

31. S.-Y. Lee and B. D. Cook, “PYRAMID-a hierarchical, rule-based approach toward proximity effect correction. I.
Exposure estimation,” IEEE Trans. Semicond. Manufact. 11(1), 108–116 (1998).

32. J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line
edge roughness in e-beam lithography through combining proximity effect correction with gray scale techniques,”
Microelectron. Eng. 87(5-8), 1041–1043 (2010).

33. J. Bolten, T. Wahlbrink, M. Schmidt, H. D. Gottlob, and H. Kurz, “Implementation of electron beam grey scale
lithography and proximity effect correction for silicon nanowire device fabrication,” Microelectron. Eng. 88(8),
1910–1912 (2011).

34. L. E. Ocola, D. J. Gosztola, D. Rosenmann, and G. Lopez, “Automated geometry assisted proximity effect correction
for electron beam direct write nanolithography,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater.,
Process., Meas., Phenom. 33(6), 06FD02 (2015).

35. O. T. Ghalehbeygi, A. G. Wills, B. S. Routley, and A. J. Fleming, “Gradient-based optimization for efficient exposure
planning in maskless lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 16(03), 1 (2017).

36. A. J. Fleming, O. T. Ghalehbeygi, B. S. Routley, and A. G. Wills, “Scanning laser lithography with constrained
quadratic exposure optimization,” IEEE Trans. Contr. Syst. Technol. 27(5), 2221–2228 (2019).

37. O. T. Ghalehbeygi, J. O’Connor, B. S. Routley, and A. J. Fleming, “Iterative deconvolution for exposure planning in
scanning laser lithography,” in American Control Conference, (Milwaukee, WI, 2018).

38. O. T. Ghalehbeygi, “Exposure planning for scanning laser lithography,” Ph.D. thesis, University of Newcastle,
Newcastle, Australia (2018).

39. Y. Ma, W. Zhong, S. Hu, J.-R. Gao, J. Kuang, J. Miao, and B. Yu, “A unified framework for simultaneous layout
decomposition and mask optimization,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 39(12), 5069–5082
(2020).

40. E. van Setten, K. Rook, H. Mesilhy, G. Bottiglieri, F. Timmermans, M. Lee, A. Erdmann, and T. Brunner,
“Multilayer optimization for high-NA EUV mask3D suppression,” in Extreme Ultraviolet Lithography 2020, vol.
11517 (International Society for Optics and Photonics, 2020), p. 115170Y.

41. Y. Shen, F. Peng, X. Huang, and Z. Zhang, “Adaptive gradient-based source and mask co-optimization with process
awareness,” Chin. Opt. Lett. 17(12), 121102 (2019).

42. H. Mesilhy, P. Evanschitzky, G. Bottiglieri, E. Van Setten, T. Fliervoet, and A. Erdmann, “Pathfinding the perfect
EUV mask: the role of the multilayer,” in Extreme Ultraviolet (EUV) Lithography XI, vol. 11323 (International
Society for Optics and Photonics, 2020), p. 1132316.

43. X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, “Pixelated source and mask optimization for immersion lithography,”
J. Opt. Soc. Am. A 30(1), 112–123 (2013).

44. X. Liu, R. Howell, S. Hsu, K. Yang, K. Gronlund, F. Driessen, H.-Y. Liu, S. Hansen, K. van Ingen Schenau, T. Hollink,
P. van Adrichem, K. Troost, J. Zimmermann, O. Schumann, C. Hennerkes, and P. Gräupner, “EUV source-mask
optimization for 7nm node and beyond,” in Extreme Ultraviolet (EUV) Lithography V, vol. 9048 International Society
for Optics and Photonics (SPIE, 2014), pp. 171–181.

45. T. Li, Y. Sun, E. Li, N. Sheng, Y. Li, P. Wei, and Y. Liu, “Multi-objective lithographic source mask optimization
to reduce the uneven impact of polarization aberration at full exposure field,” Opt. Express 27(11), 15604–15616
(2019).

46. X. Wu, S. Liu, J. Li, and E. Y. Lam, “Efficient source mask optimization with zernike polynomial functions for source
representation,” Opt. Express 22(4), 3924–3937 (2014).

47. J. Li, S. Liu, and E. Y. Lam, “Efficient source and mask optimization with augmented Lagrangian methods in optical
lithography,” Opt. Express 21(7), 8076–8090 (2013).

48. Y. Shen, “Lithographic source and mask optimization with narrow-band level-set method,” Opt. Express 26(8),
10065–10078 (2018).

49. Y. Shen, F. Peng, and Z. Zhang, “Semi-implicit level set formulation for lithographic source and mask optimization,”
Opt. Express 27(21), 29659–29668 (2019).

https://doi.org/10.1021/acsami.9b05553
https://doi.org/10.1016/j.precisioneng.2019.03.012
https://doi.org/10.1109/TCAD.2011.2179041
https://doi.org/10.1016/j.sse.2010.05.009
https://doi.org/10.1109/66.661291
https://doi.org/10.1109/66.661290
https://doi.org/10.1016/j.mee.2009.11.097
https://doi.org/10.1016/j.mee.2010.12.047
https://doi.org/10.1116/1.4931691
https://doi.org/10.1116/1.4931691
https://doi.org/10.1117/1.JMM.16.3.033507
https://doi.org/10.1109/TCST.2018.2836910
https://doi.org/10.1109/TCAD.2020.2981457
https://doi.org/10.3788/COL201917.121102
https://doi.org/10.1364/JOSAA.30.000112
https://doi.org/10.1364/OE.27.015604
https://doi.org/10.1364/OE.22.003924
https://doi.org/10.1364/OE.21.008076
https://doi.org/10.1364/OE.26.010065
https://doi.org/10.1364/OE.27.029659


Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 20579

50. X. Ma, Q. Zhao, H. Zhang, Z. Wang, and G. R. Arce, “Model-driven convolution neural network for inverse
lithography,” Opt. Express 26(25), 32565–32584 (2018).

51. S. Lan, J. Liu, Y. Wang, K. Zhao, and J. Li, “Deep learning assisted fast mask optimization,” in Optical
Microlithography XXXI, vol. 10587 (International Society for Optics and Photonics, 2018), p. 105870H.

52. H. Yang, W. Zhong, Y. Ma, H. Geng, R. Chen, W. Chen, and B. Yu, “VLSI mask optimization: From shallow to deep
learning,” Integration 77, 96–103 (2021).

53. A. Gramacki and J. Gramacki, “FFT-based fast computation of multivariate kernel density estimators with
unconstrained bandwidth matrices,” J. Comput. Graph. Stat. 26(2), 459–462 (2017).

54. T. F. Chan and T. P. Mathew, “Domain decomposition algorithms,” Acta Numer. 3, 61–143 (1994).
55. J. Xu, “Iterative methods by space decomposition and subspace correction,” SIAM Rev. 34(4), 581–613 (1992).
56. J. Galtier and S. Lanteri, “On overlapping partitions,” in Proceedings of the 2000 International Conference on

Parallel Processing, (IEEE Computer Society, USA, 2000), p. 461.
57. A. Langer and F. Gaspoz, “Overlapping domain decomposition methods for total variation denoising,” SIAM J.

Numer. Anal. 57(3), 1411–1444 (2019).
58. C. Carstensen, “Domain decomposition for a non-smooth convex minimization problem and its application to

plasticity,” Numer. Linear Algebra Appl. 4(3), 177–190 (1997).
59. M. Guizar-Sicairos, I. Johnson, A. Diaz, M. Holler, P. Karvinen, H.-C. Stadler, R. Dinapoli, O. Bunk, and A. Menzel,

“High-throughput ptychography using Eiger: scanning X-ray nano-imaging of extended regions,” Opt. Express
22(12), 14859–14870 (2014).

60. Y. S. G. Nashed, D. J. Vine, T. Peterka, J. Deng, R. Ross, and C. Jacobsen, “Parallel ptychographic reconstruction,”
Opt. Express 22(26), 32082–32097 (2014).

61. S. Marchesini, H. Krishnan, B. J. Daurer, D. A. Shapiro, T. Perciano, J. A. Sethian, and F. R. N. C. Maia, “SHARP: a
distributed GPU-based ptychographic solver,” J. Appl. Crystallogr. 49(4), 1245–1252 (2016).

62. J. Shi, P. Wang, and K. Cai, “Subdomain method for layout optimization of piles in a composite pile foundation,”
Current Trends in Civil & Structural Engineering 4, 000576 (2019).

63. R. Byrd, P. Lu, and J. Nocedal, “A limited memory algorithm for bound constrained optimization,” SIAM J. Sci.
Comput. 16(5), 1190–1208 (1995).

64. J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research and Financial
Engineering (Springer, New York, 2000).

65. J. Nocedal, “Updating quasi-newton matrices with limited storage,” Math. Comp. 35(151), 773–782 (1980).
66. S. Becker, “L-BFGS-B-C,” https://github.com/stephenbeckr/L-BFGS-B-C. Accessed: 2018-06-01.
67. C. Zhu, R. H. Byrd, and J. Nocedal, “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained

optimization,” ACM Trans. Math. Softw. 23(4), 550–560 (1997).
68. C. Jidling, “Source code for ’Memory efficient constrained optimization of scanning-beam lithography’,”

https://github.com/carji475/scanning-beam-lithography (2022).

https://doi.org/10.1364/OE.26.032565
https://doi.org/10.1016/j.vlsi.2020.11.001
https://doi.org/10.1080/10618600.2016.1182918
https://doi.org/10.1017/S0962492900002427
https://doi.org/10.1137/1034116
https://doi.org/10.1137/18M1173782
https://doi.org/10.1137/18M1173782
https://doi.org/10.1002/(SICI)1099-1506(199705/06)4:3<177::AID-NLA106>3.0.CO;2-B
https://doi.org/10.1364/OE.22.014859
https://doi.org/10.1364/OE.22.032082
https://doi.org/10.1107/S1600576716008074
https://doi.org/10.33552/CTCSE.2019.04.000576
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1090/S0025-5718-1980-0572855-7
https://github.com/stephenbeckr/L-BFGS-B-C
https://doi.org/10.1145/279232.279236
https://github.com/carji475/scanning-beam-lithography

